DOI QR코드

DOI QR Code

Spectroscopic Studies on U(VI) Complex with 2,6-Dihydroxybenzoic acid as a Model Ligand of Humic Acid

분광학을 이용한 흄산의 모델 리간드인 2,6-Dihydroxybenzoic acid와 우라늄(VI)의 착물형성 반응에 관한 연구

  • Received : 2011.09.09
  • Accepted : 2011.12.27
  • Published : 2011.12.30

Abstract

In this study the complex formation reactions between uranium(VI) and 2,6-dihydroxybenzoate (DHB) as a model ligand of humic acid were investigated by using UV-Vis spectrophotometry and time-resolved laser-induced fluorescence spectroscopy (TRLFS). The analysis of the spectrophotometric data, i.e., absorbance changes at the characteristic charge-transfer bands of the U(VI)-DHB complex, indicates that both 1:1 and 1:2 (U(VI):DHB) complexes occur as a result of dual equilibria and their distribution varies in a pH-dependent manner. The stepwise stability constants determined (log $K_1$ and log $K_2$) are $12.4{\pm}0.1$ and $11.4{\pm}0.1$. Further, the TRLFS study shows that DHB plays a role as a fluorescence quencher of U(VI) species. The presence of both a dynamic and static quenching process was identified for all U(VI) species examined, i.e., ${UO_2}^{2+}$, $(UO_2)_2{(OH)_2}^{2+}$, and $(UO_2)_3{(OH)_5}^+$. The fluorescence intensity and lifetimes of each species were measured from the time-resolved spectra at various ligand concentrations, and then analyzed based on Stern-Volmer equations. The static quenching constants (log $K_s$) obtained are $4.2{\pm}0.1$, $4.3{\pm}0.1$, and $4.34{\pm}0.08$ for ${UO_2}^{2+}$, $(UO_2)_2{(OH)_2}^{2+}$, and $(UO_2)_3{(OH)_5}^+$, respectively. The results of Stern-Volmer analysis suggest that both mono- and bi-dentate U(VI)-DHB complexes serve as groundstate complexes inducing static quenching.

UV-Vis 분광광도법과 시간분해 레이저 유도 형광분광법(TRLFS)을 이용하여 흄산의 모사 리간드로 사용한 2,6-Dihydroxybenzoate(DHB)와 U(VI)의 착물형성반응을 조사하였다. U(VI)-DHB 착물 고유의 전하이동 흡수 스펙트럼을 분석한 결과, 착물형성반응은 우라늄-리간드 비가 1:1 또는 1:2 착물을 형성하는 이중 평형반응이며, 산도에 따라 착물종의 분포가 변한다는 것을 밝혔다. 계산된 착물형성상수 (log $K_1$ and log $K_2$)는 $12.4{\pm}0.1$$11.4{\pm}0.1$이다. 이에 더하여, TRLFS 방법으로 조사한 결과, DHB는 U(VI) 화학종들의 형광 소광제(quencher)로서 역할을 한다는 것을 확인하였다. 특히, 확인된 U(VI) 화학종 모두(${UO_2}^{2+}$, $(UO_2)_2{(OH)_2}^{2+}$$(UO_2)_3(OH)_5{^+})$에서 정적 (static) 및 동적 (dynamic) 소광작용이 공존하는 것으로 관찰되었다. 시간분해 형광 스펙트럼으로부터 리간드 농도에 따른 U(VI) 화학종의 형광세기와 형광수명을 측정하였으며, Stern-Volmer 식을 이용하여 분석하였다. 결정된 정적소광계수(KS)는 ${UO_2}^{2+}$, $(UO_2)_2{(OH)_2}^{2+}$$(UO_2)_3(OH)_5+$에 대하여 각각 $4.2{\pm}0.1$, $4.3{\pm}0.1$$4.34{\pm}0.08$이다. Stern-Volmer 식을 이용한 분석 결과, 단일 또는 이중 배위자 구조(mono- and bi-dentate)의 U(VI)-DHB 착물이 모두 정적소광효과에 관여하는 바닥상태 착물임을 확인하였다.

Keywords

References

  1. Kim, J.-I., "Significance of actinide chemistry for the long-term safety of waste disposal", Nucl. Engin. Tech. 38, 459-482 (2006).
  2. Fangha¨nel, T., Neck, V., "Aquatic chemistry and solubility phenomena of actinide oxides/hydroxides", Pure Appl. Chem. 74, 1895-1907 (2002). https://doi.org/10.1351/pac200274101895
  3. Moll, H., Geipel, G., Reich, T., Bernhard, G., Fangha ¨nel, T., Grenthe, I., "Uranyl(VI) complexes with alpha-substituted carboxylic acids in aqueous solution", Radiochim. Acta 91, 11-20 (2003). https://doi.org/10.1524/ract.91.1.11.19008
  4. Schmeide, K., Sachs, S., Bubner, M., Reich, T., Heise, K. H., Bernhard, G., "Interaction of uranium(VI) with various modified and unmodified natural and synthetic humic substances studied by EXAFS and FTIR spectroscopy", Inorg. Chim. Acta 351, 133-140 (2003). https://doi.org/10.1016/S0020-1693(03)00184-1
  5. Stumm, W., Furrer, G. The dissolution of oxides and aluminium silicates: Examples of surfacecoordinatin-controlled kinetics. In: Aquatic Surface Chemistry. J. Wiley & Sons, New York, (1987) pp. 197-219.
  6. Jankovic, I. A., Saponjic, Z. V., Comor, M. I., Nedeljkovic, J. M., "Surface modification of colloidal $TiO_{2}$ nanoparticles with bidentate benzene derivatives", J. Phys. Chem. 113, 12645-12652 (2009). https://doi.org/10.1021/jp905064v
  7. Mitchell-Koch, J. T., Reid, K. R., Meyerhoff, M. E., "Salicylate detection by complexation with Iron(III) and optical absorbance spectroscopy", J. Chem. Educ. 85, 1658-1659 (2008). https://doi.org/10.1021/ed085p1658
  8. Greenaway, F. T., Norris, L. J., "Mononuclear and binuclear copper(II) complexes of 3,5-diisopropylsalicylic acid", Inorg. Chim. Acta 145, 279-284 (1988). https://doi.org/10.1016/S0020-1693(00)83970-5
  9. Kim, B.-I., Miyake, C., Imoto, S., "Spectroscopic studies on the uranyl complexes with 1,2-disubstituted benzenes", J. Inorg. Nucl. Chem. 36, 2015-2021 (1974). https://doi.org/10.1016/0022-1902(74)80715-3
  10. Banks, C. V., Singh, R. S., "Composition and stability of some metal-5-sulfosalicylate complexes", J. Inorg. Nucl. Chem. 15, 125-132 (1960). https://doi.org/10.1016/0022-1902(60)80020-6
  11. Foley, R. T., Anderson, R. C., "Spectrophotometric studies of complex formation with sulfosalicylic Acid. II. With uranyl ion", J. Am. Chem. Soc. 71, 909-914 (1949). https://doi.org/10.1021/ja01171a040
  12. Rao, J. M., Seshaiah, U. V., "Stability constants of uranyl chelates with nuclear-substituted salicylic acids", Bull. Chem. Soc. Jap. 39, 2668-2671 (1966). https://doi.org/10.1246/bcsj.39.2668
  13. Gangopadhyay, S., Banerjee, R. N., Banerjea, D., "Complexation of uranium(VI) by salicylate and substitute salicylates: A kinetic study", Transition Met. Chem. 10, 325-328 (1985). https://doi.org/10.1007/BF01036391
  14. Yousif, Y. Z., Al-Imarah, F. J. M., "Spectroscopic study of the effect of substitution on the thermodynamic stability of the 1:1 complexes of the dioxouranium(II) ion with mono-substituted salicylic acids in aqueous media", Transition. Met. Chem. 14, 123-126 (1989). https://doi.org/10.1007/BF01040605
  15. Jahagirdar, D. V., Khanolkar, D. D., "Studies of UO2(II) complexes of substituted salicylic acids", J. Inorg. Nucl. Chem. 35, 921-930 (1973). https://doi.org/10.1016/0022-1902(73)80462-2
  16. Rajan, K. S., Martell, A. E., "Equilibrium studies of uranyl complexes - I. Interaction of uranyl ion with some hydroxycarboxylic and aminocarboxylic acids", J. Inorg. Nucl. Chem. 26, 789-798 (1964). https://doi.org/10.1016/0022-1902(64)80324-9
  17. Vartak, D. G., Menon, K. R., "Stability constants of some substituted salicylic acids and their complexes", J. Inorg. Nucl. Chem. 33, 1003-1011 (1971). https://doi.org/10.1016/0022-1902(71)80167-7
  18. Silva, J. C. G. E. d., Machado, A. A. S. C., Oliveira, C. J. S., "Study of the interaction of a soil fulvic acid with UO22+ by self-modelling mixture analysis of synchronous molecular fluorescence spectra", Analyst 121, 1373-1379 (1996). https://doi.org/10.1039/an9962101373
  19. Toraishi, T., Aoyagi, N., Nagasaki, S., Tanaka, S., "Stoichiometry, stability constants and coordination geometry of Eu(III) 5-sulfosalicylate complex in aqueous system - A TRLFS study", Dalton Trans. 3495-3502 (2004).
  20. Jung, E. C., Cho, H.-R., Park, K. K., Yeon, J.-W., Song, K., "Nanoparticle sizing by a laser-induced breakdown detection using an optical probe beam deflection", Appl. Phys. B 97, 867-875 (2009). https://doi.org/10.1007/s00340-009-3780-9
  21. 조혜륜, 박경균, 정의창, 송규석, "모세관 셀을 이용한 수용액 내 악티나이드 화학종의 고감도 검출", 방사성폐기물학회지, 7(2), pp. 109-114 (2009).
  22. Cha, W., Cho, H.-R., Park, K., Jung, E. C., Kim, W., Song, K., "Spectroscopic Studies on U(VI)-Salicylate Complex Formation with Multiple Equilibria", Radiochim. Acta In print, (2012), doi 10.1524/ract.2012.1930.
  23. Guillaumont, R., Fangh?nel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D. A., Rand, M. H. In: (OECD, NEA-TDB): Chemical thermodynamics. vol. 5. Update on the Chemical Thermodynamics of Uranium, Neptinum, Plutonium, Americium and Technetium. Elsevier, North-Holland, Amsterdam, (2003) p. 157.
  24. 정의창, 조혜륜, 박경균, "시간분해 레이저 유도 형광분광학을 이용한 우라늄(VI) 가수분해 화학종 규명 연구", 방사성폐기물학회지, 7(3), pp. 133-141 (2009).
  25. Eliet, V., Bidoglio, G., Omenetto, N., Parma, L., Grenthe, I., "Characterisation of hydroxide complexes of uranium(VI) by time-resolved fluorescence spectroscopy", J. Chem. Soc. Farad. Trans. 91, 2275-2285 (1995). https://doi.org/10.1039/ft9959102275
  26. Moulin, C., Laszak, I., Moulin, V., Tondre, C., "Time-resolved laser-induced fluorescence as a unique tool for low-level uranium speciation", Appl. Spec. 52, 528-535 (1998). https://doi.org/10.1366/0003702981944076
  27. Harris, D. C. Application of Spectrophotometry. In: Quantitative Chemcal Analysis. 6th ed., W.H. Freeman and Company, New York, (2006) pp. 440-442.
  28. Deranleau, D. A., "Theory of the measurement of weak molecular complexes. II. Consequences of multiple equilibria", J. Am. Chem. Soc. 91, 4050-4054 (1969). https://doi.org/10.1021/ja01043a005
  29. Bruneau, E., Lavabre, D., Levy, G., Micheau, J. C., "Quantitative analysis of continuous-variation plots with a comparison of several methods", J. Chem. Educ. 69, 833-837 (1992). https://doi.org/10.1021/ed069p833
  30. Lajunen, L. H. J., Portanova, R., Piispanen, J., Tolazzi, M., "Stability Constants for alpha-Hydroxycarboxylic Acid Complexes with Protons and Metal Ions and the Accompanying Enthalpy Changes - Part I:Aromatic orth-hydroxycarboxylic Acids", Pure & Appl. Chem. 69, 329-381 (1997). https://doi.org/10.1351/pac199769020329
  31. Weert, M. v. d., "Fluorescence quenching to study protein-ligand binding: Common errors", J. Fluoresc. 20, 625-629 (2010). https://doi.org/10.1007/s10895-009-0572-x
  32. Lakowicz, J. R. Quenching of Fluorescence. In: Principles of Fluorescence Spectroscopy. Springer, New York, NY, (2006) p. 282.
  33. Pompe, S., Brachmann, A., Bubner, M., Geipel, G., Heise, K. H., Bernhard, G., Nitsche, H., "Determination and comparison of uranyl complexation constants with natural and model humic acids", Radiochim. Acta 82, 89-95 (1998).