DOI QR코드

DOI QR Code

Proteomic Characteristics of Calcium Enriched King Oyster Mushroom (Pleurotus eryngii)

칼슘함량이 강화된 새송이 버섯의 프로테옴 분석

  • Bae, Hee-Sun (Pohang Center for Evaluation of Biomaterials) ;
  • Kim, Dae-Hyun (School of Nano-Bioscience & Chemical Engineering, UNIST) ;
  • Choi, Ung-Kyu (School of Nano-Bioscience & Chemical Engineering, UNIST)
  • 배희선 ((재)포항테크노파크 바이오정보지원센터) ;
  • 김대현 (울산과학기술대학교 나노생명화학공학부) ;
  • 최웅규 (울산과학기술대학교 나노생명화학공학부)
  • Received : 2010.09.02
  • Accepted : 2010.12.02
  • Published : 2011.02.28

Abstract

This study was conducted to identify the differences in proteomic characteristics between Ca-enriched king oyster mushrooms and general king oyster mushrooms. A combined high-throughput proteomic approach was employed to determine the expression profiles and identity of proteins using 2-dimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. The overall distribution patterns of the proteins were quite similar, but many of the protein spot intensities varied. A total of 10 proteins, representing a significant difference in the quantities of protein betweenthe two types of mushrooms, were successfully identified. Among these proteins, eight kinds were increased in the Ca-enriched king oyster mushrooms and two kinds were decreased. This study showed that proteomic analysis can help define specific changes in protein level and composition, which can occur in mushrooms where Ca content may or may not be enriched.

본 연구에서는 프로테오믹스 기술을 활용하여 칼슘함량이 증가된 새송이버섯과 일반 새송이 버섯에서 단백질 발현의 변화를 조사하였다. 또한 현저한 차이를 보이는 단백질들을 분리, 동정함으로써 새송이버섯 칼슘강화의 기작규명에 기초자료를 제공하고자 하였다. 새송이버섯의 단백질 패턴을 확인한 결과 15 Kda에서 100 Kda 사이에 존재하는 60% 정도의 spot은 산성 pI를 가지며 나머지 40% 정도의 spot은 염기성 영역에 나타났다. 100 Kda 이상에서는 polypeptide spot이 거의 나타나지 않았다. 그리고 9.0 이상의 pI에서도 spot은 거의 나타나지 않았다. 두 배 이상의 발현변화를 보이는 30여개의 spot들 중 10개의 spot에 대한 단백질동정을 할 수 있었다. 10개의 확인된 단백질은 8개의 단백질은 발현이 증가하는 것으로 나타났으며 2개의 단백질은 발현이 감소하는 것으로 나타났다. 동정된 단백질들의 기능을 고찰한 결과 새송이버섯의 칼슘강화기작을 규명하는데 기초자료로 활용할 수 있을 것으로 기대된다.

Keywords

References

  1. Rajarathnam S, Bano Z. Pleurotus mushrooms. Part 1 A. Morphology, life cycle, taxonomy, breeding, and cultivation. CRC Crit. Rev. Food Sci. 26: 157-223 (1987) https://doi.org/10.1080/10408398709527465
  2. Jin SK, Kim IS, Kim Dh, Jeong KJ, Moon SS. Effect of Pleurotus eryngii and meat particle size on sausage quality. Korean J. Food Sci. Anim. Resour. 26: 343-348 (2006)
  3. Hwang YJ, Nam HK, Chang MJ, Noh GW, Kim SH. Effect of Lentinus edodes and Pleurotus eryngii extracts on proliferation and apoptosis in human colon cancer cell lines. Korean J. Food Sci. Nutr. 32: 217-222 (2003) https://doi.org/10.3746/jkfn.2003.32.2.217
  4. Kang TS, Kang MS, Sung JM, Kang AS, Shon HR, Lee SY. Effect of Pleurotus eryngii on the blood glucose and cholesterol in diabetic rats. Korean J. Mycol. 29: 86-90 (2001)
  5. Kawai, H, Sugahara T, Matsuzawa M, Sumiyashiki K, Aoyagi Y, Hosogai Y. Mineral contents in edible mushrooms. J. Jpn. Soc. Food Sci. Technol. 33: 250-255 (1986) https://doi.org/10.3136/nskkk1962.33.4_250
  6. Kawai H, Sugahara T, Fujishiro S, Matsuzawa M, Aoyagi Y, Hosogai Y. Mineral contents of edible mushrooms growing on wood. Comparison with mineral contents of mushrooms growing in soil. J. Jpn. Soc. Food Sci. Technol. 37: 468-473 (1990) https://doi.org/10.3136/nskkk1962.37.6_468
  7. Sasaki H, Aoyagi Y, Dasuga A, Tanaka Y, Masuzawa M, Kawai H. Relationships between fruit body compositions and substrates in bunashimeji [Hypsizygus marmoreus (peck) bigelow], nameko [Pholiota nameko (J. Ito)] and enokitake [Flammulina velutipes (Curt: Fr.) Sing.] mushrooms cultivated on sawdust substrate beds. J. Jpn. Soc. Food Sci. Technol. 42: 471-477 (1995) https://doi.org/10.3136/nskkk.42.471
  8. Sugahara T, Matsuzawa M, Fujishiro S, Aoyagi Y, Hosogai Y. Mineral contents in edible mushrooms growing in soil. J. Jpn. Soc. Food Sci. Technol. 37: 540-546 (1990) https://doi.org/10.3136/nskkk1962.37.7_540
  9. Tham LX, Matsuhashi S, Kume T. Growth and fruit body formulation of Ganoderuma lucidum on media supplemented with vanadium, selenium and germanium. Mycoscience 40: 87-92 (1999) https://doi.org/10.1007/BF02465679
  10. Tham LX, Matsuhashi S, Kume T. Responses of Ganoderma lucidum to heavy metals. Mycoscience 40: 209-213 (1999) https://doi.org/10.1007/BF02464301
  11. Yasui A, Tsutsumi C, Takasaki M, Mori T. Absorption of elements from heavy metals containing culture media by oyster mushroom (Pleurotus ostreatus (Fr.) Quel.). J. Jpn. Soc. Food Sci. Technol. 35: 160-165 (1998)
  12. Tabata T, Ogura T. Absorption of calcium and magnesium by the fruiting body of the cultivated mushroom Hypsizygus marmoreus (peck) bigelow from sawdust culture media. J. Food Sci. 68: 76-79 (2003) https://doi.org/10.1111/j.1365-2621.2003.tb14117.x
  13. Tabata T, Shinohara H. Absorption of calcium salts added culture media by hiratake (Pleurotus ostreatus (Fr.) Quel.) and Nameko (Pholiota nameko J. Ito). J. Jpn. Soc. Food Sci. Technol. 42: 682-686 (1995) https://doi.org/10.3136/nskkk.42.682
  14. Lee NH, Im MH, Choi UK. Calcium absorption by the fruit body of saesongi mushroom. Food Sci. Biotechnol. 15: 308-311 (2006)
  15. Choi UK, Bajpai VK, Lee NH. Influence of calcinated starfish powder on growth, yield, spawn run and primordial germination of king oyster mushroom (Pleurotus eryngii). Food Chem. Toxicol. 47: 2830-2833 (2009) https://doi.org/10.1016/j.fct.2009.08.019
  16. Perkin-Elmer Corporation. Analytical Methods for Atomic Absorption Spectroscopy. Perkin-Elmer Corp, Norwalk, CT, USA (1968)
  17. Liang Y, Chen H, Tang M, Shen S. Proteome analysis of an ectomycorrhizal fungus Boletus edulis under salt shock. Mycol. Res. 111: 939-946 (2007) https://doi.org/10.1016/j.mycres.2007.06.005
  18. Shimizu M, Wariishi H. Development of a sample preparation method for fungal proteomics. FEMS Microbiol. Lett. 247: 17-22 (2005) https://doi.org/10.1016/j.femsle.2005.04.021
  19. Jensen ON, Wilm M, Shevchenko A, Mann M. Sample preparation methods for mass spectrometric peptide mapping directly from 2-DE gels. Methods Mol. Biol. 112: 513-530 (1999)
  20. Pappin DJ. Peptide mass fingerprinting using MALDI-TOF mass spectrometry. Methods Mol Biol. 64: 165-173 (1997)
  21. Harper JF, Sussman MR, Schaller GE, Putnam-Evans C, Charbonneau H, Harmon AC. A calcium-dependent protein kinase with a regulatory domain similar to calmodulin. Science 252: 951-954 (1991) https://doi.org/10.1126/science.1852075
  22. Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R. Regulation of mitochondrial ATP synthesis by calcium: Evidence for a long-term metabolic priming. Proc. Natl. Acad. Sci. USA 96: 13807-13812 (1999) https://doi.org/10.1073/pnas.96.24.13807
  23. Galperin MY, Bairoch A, Koonin EV. A superfamily of metalloenzymes unifies phosphopentomutase and cofactor-independent phosphoglycerate mutase with alkaline phosphatases and sulfatases. Protein Sci. 7: 1829-1835 (1998) https://doi.org/10.1002/pro.5560070819
  24. Fothergill-Gilmore LA, Watson HC. The phosphoglycerate mutases. Adv. Enzymol. RAMB 62: 227-313 (1989)
  25. Pohl M, Sprenger GA, Mller M. A new perspective on thiamine catalysis. Curr. Opin. Biotech. 15: 335-342 (2004) https://doi.org/10.1016/j.copbio.2004.06.002
  26. Machado CR, de Oliveira RL, Boiteux S, Praekelt UM, Meacock PA, Menck CF. Thi1, a thiamine biosynthetic gene in Arabidopsis thaliana, complements bacterial defects in DNA repair. Plant Mol. Biol. 31: 585-593 (1996) https://doi.org/10.1007/BF00042231
  27. Ahn IP, Kim S, Lee YH. Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol. 138: 1505-1515 (2005) https://doi.org/10.1104/pp.104.058693