DOI QR코드

DOI QR Code

A Study on the Processes of Elaborating Hypotheses in Abductive Inquiry of Preservice Elementary School Teachers

예비 초등 교사들의 귀추적 탐구 활동에서 가설의 정교화 과정에 관한 연구

  • Received : 2010.10.05
  • Accepted : 2011.01.21
  • Published : 2011.02.28

Abstract

The goal of this study was to investigate how hypotheses were elaborated after their initial appearances in the context of scientific problem solving. Data were collected from a class in which preservice elementary school teachers in groups carried out abductive inquiry of earth science. The analysis revealed two major processes of hypothesis elaboration: theory-driven and evidence-driven. The theory-driven process was in turn distinguished into two kinds of subprocesses: one is in pursuit of internal coherence and the other external coherence. The evidencedriven elaboration also had two subprocesses, which were triggered by direct evidence and indirect or analogical evidence, respectively. In addition, hypotheses were more often than not modified by a wrong theory or evidence whether it was driven by a theory or evidence. Implications for science education and related research were discussed.

이 연구의 목적은 과학적인 문제를 해결하기 위하여 가설을 형성하는 상황에서 최초로 상정된 가설들이 어떤 정교화 과정을 거쳐 더욱 발전하게 되는지 탐색하는 것이었다. 이를 위하여 예비 초등 교사들이 조를 이루어 지구과학의 귀추적 탐구 과제를 해결하는 상황에서 자료를 수집하여 분석하였다. 그 결과, 예비 교사들의 가설 정교화 과정을 크게 '이론에 의해 유도되는 과정'과 '증거에 의해 유도되는 과정'으로 나누어 볼 수 있었다. 이론유도과정은 다시 '내적 정합성'과 '외적 정합성'을 추구하는 경우로 구분되었으며, 증거유도과정은 '직접 증거'에 의한 것과 '간접 증거' 또는 '유사 증거'에 의한 것으로 구분되었다. 또, 각각의 경우에 잘못된 이론이나 그릇된 증거에 의해 가설이 수정되어지는 사례도 발견되었다. 이러한 연구 결과가 과학 교육과 관련 연구에 시사하는 바를 논의하였다.

Keywords

References

  1. 권용주, 정진수, 강민정, 김영신(2003). 과학적 가설 지식 생성 과정에 대한 바탕 이론. 한국과학교육학회지, 23(5), 458-469.
  2. 박종원(2000). 학생의 과학적 설명 가설의 생성과정 분석: 과학적 가설의 정의와 특성을 중심으로. 한국과학교육학회지, 20(4), 667-679.
  3. 오필석(2008). 지구과학자와 대학생들의 가설 형성 과정 비교: 태풍의 이상 경로에 대한 사례를 중심으로. 한국과학교육학회지, 28(6), 649-663.
  4. 오필석, 김찬종(2005). 지구과학의 한 탐구 방법으로서 귀추법에 대한 이론적 고찰. 한국과학교육학회지, 25(5), 610-623.
  5. Baker, V. R. (1996). Hypotheses and geomorphological reasoning. In B. L. Rhoads & C. E. Thorn (Ed.), The scientific nature of geomorphology (pp. 57-85). New York: Wiley.
  6. Baker, V. R. (2000). Conversing with the earth: The geological approach to understanding. In R. Frodeman (Ed.), Earth matters: The earth sciences, philosophy, and the claims of the community (pp. 2-10). Upper Saddle River, NJ: Prentice Hall.
  7. Berland, L. K., & Reiser, B. J. (2009). Making sense of argumentation and explanation. Science Education, 93, 26-55. https://doi.org/10.1002/sce.20286
  8. Blachowicz, J. (1989). Discovery and ampliative inference. Philosophy of Science, 56(3), 438-462. https://doi.org/10.1086/289500
  9. Clement, J. J. (2008). Creative model construction in scientists and students: The role of imagery, analogy, and mental simulation. Dordrecht, The Netherlands: Springer.
  10. Crawford, B. A. (2000). Enhancing the essence of inquiry: New roles for science teachers. Journal of Research in Science Teaching, 37(9), 916-937. https://doi.org/10.1002/1098-2736(200011)37:9<916::AID-TEA4>3.0.CO;2-2
  11. Darden, L. (1992). Strategies in anomaly resolution. In R. Giere (Ed.), Cognitive models of science (pp 251-273). Minneapolis, MN: University Minnesota Press.
  12. Engelhardt, W. von, & Zimmermann, J. (1988). Theory of earth science (translated by L. Fisher). Cambridge, UK: Cambridge University Press.
  13. Frodeman, R. (1995). Geological reasoning: Geology as an interpretive and historical science. GSA Bulletin, 107(8), 960-968. https://doi.org/10.1130/0016-7606(1995)107<0960:GRGAAI>2.3.CO;2
  14. Giere, R. N., Bickle, J., & Mauldin, R. F. (2006). Understanding scientific reasoning (5th ed.). Belmont, CA: Thomson Wadsworth.
  15. Haig, B. D. (2005). An abductive theory of scientific method. Psychological Methods 10(4), 371-388. https://doi.org/10.1037/1082-989X.10.4.371
  16. Hanson, N. R. (1958). Patterns of discovery: An inquiry into the conceptual foundations of science. Cambridge, UK: Cambridge University Press.
  17. Kim, C.-J. (2003). Preparing teachers for systems science methodology. In V. J. Mayer (Ed.), Implementing global science literacy (pp. 255-266). Columbus, OH: The Ohio State University.
  18. Kleinhans, M., Buskes, C. J. J., & de Regt, H. W. (2005). Terra Incognita: Explanation and reduction in earth science. International Studies in the Philosophy of Science, 19(3), 289-317. https://doi.org/10.1080/02698590500462356
  19. Kordig, C. R. (1978). Discovery and justification. Philosophy of Science, 45, 110-117. https://doi.org/10.1086/288782
  20. Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science Education, 77, 319-337. https://doi.org/10.1002/sce.3730770306
  21. Kuhn, D., Amsel, E., & O'Loughlin, M. (1988). The development of scientific thinking skills. San Diego, CA: Academic Press.
  22. Laudan, L. (1981). Science and hypothesis: Historical essays on scientific methodology. Dordrecht, Holland: D. Reidel.
  23. Leach, J. (1999). Students'understanding of the co-ordination of theory and evidence in science. International Journal of Science Education, 21(8), 789-806. https://doi.org/10.1080/095006999290291
  24. Levin, H. L., & Smith, M. S. (2008). Laboratory studies in earth history (9th ed.). New York: McGraw-Hill
  25. Magnani, L. (2001). Abduction, reason, and science: Process of discovery and explanation. New York: Kluwer Academic/Plenum.
  26. Nickles, T. (1980). Scientific discovery: Cases studies. Dordrecht, Holland: D. Reidel.
  27. Oh, P. S. (2008). Adopting the abductive inquiry model (AIM) into undergraduate earth science laboratories. In I. V. Eriksson (Ed.), Science education in the 21st century (pp. 263-277). New York: Nova.
  28. Oh, P. S. (2010). How can teachers help students formulate scientific hypotheses? Some strategies found in abductive inquiry activities of earth science. International Journal of Science Education, 32(4), 541-560. https://doi.org/10.1080/09500690903104457
  29. Oh, P. S. (in press). Characteristics of abductive inquiry in earth science: An undergraduate case study. Science Education.
  30. Roth, W.-M. (1996). Teacher questioning in an open-inquiry learning environment: Interactions of context, content, and student responses. Journal of Research in Science Teaching, 33(7), 709-736. https://doi.org/10.1002/(SICI)1098-2736(199609)33:7<709::AID-TEA2>3.0.CO;2-R
  31. Sampson, V., & Clark, D. B. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science Education, 92, 447-472. https://doi.org/10.1002/sce.20276
  32. Sandoval, W. A., & Millwood, K. A. (2005). The quality of students'use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23-55. https://doi.org/10.1207/s1532690xci2301_2
  33. Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.
  34. Thayer, H. S. (1953). Newton's philosophy of nature: Selections from his writing. New York: Hafner Press.
  35. Walton, D. (2004). Abductive reasoning. Tuscaloosa, AL: The University of Alabama Press.