DOI QR코드

DOI QR Code

수열합성법에 의해 합성된 수산화아파타이트 결정의 입자 형상에 관한 EDTA의 영향

Effects of EDTA on morphology of hydroxyapatite prepared by hydrothermal method

  • Choi, Bong-Seok (School of Materials Science Enginnering, Pusan National University) ;
  • Kim, Dong-Hyun (School of Materials Science Enginnering, Pusan National University) ;
  • Kim, Tae-Wan (School of Materials Science Enginnering, Pusan National University) ;
  • Park, Hong-Chae (School of Materials Science Enginnering, Pusan National University) ;
  • Yoon, Seog-Young (School of Materials Science Enginnering, Pusan National University)
  • 투고 : 2011.03.10
  • 심사 : 2011.04.08
  • 발행 : 2011.04.30

초록

육방정계 구조를 가지는 수산화아파타이트 결정은 킬레이트 착화합물을 형성 할 수 있는 EDTA(ethylene diamine tetraacetic acid)를 이용하여 수열조건에서 합성 하였다. 제조된 분말은 X-선 회절 패턴 및 주사전자현미경에 의해 특성 평가 하였다. 제조된 수산화아파타이트 분말은 육방정계 구조의 c축에 따라 결정이 성장하였고, 결정의 형상은 수열온도, pH, EDTA/Ca 및 출발물질의 Ca/P 몰 비와 같은 반응 파라메타에 의해 제어 되었다.

Hydroxyapatite (HAP) crystals with hexagonal structure have been successfully synthesized by using EDTA(ethylene diamine tetraacetic acid) as chelate under hydrothermal condition. The as-prepared HAp powders were characterized by XRD and SEM. The XRD result indicated that the products were preferentially oriented along c-axis. The SEM photographs showed that the morphology of the HAp crystals was well controlled by the reaction parameters such as temperature, pH value, and the molar ratio of EDTA/Ca.

키워드

참고문헌

  1. K.-B. Park, J.-W. Park, H.-U. Ahn, D.-J. Yang, S.-K. Choi, I.-S. Jang, S.-I. Yeo and J.-Y. Suh, "Comparative study on the physicochemical properties and cytocom patibility of microporous biphasic calcium phosphate ceramics as a bone graft substitute", J. Periodontol Implant Sci. 36 (2006) 797.
  2. M. Jarcho, "Calcium phosphate ceramics as hard tissue prosthetics", Clin. Orthop. Res. 157 (1981) 259.
  3. H. Aoki, Science and Medical Applications of Hydroxyapatite, Japanese Association of Apatite Science, Tokyo (1991).
  4. L.L. Hench, "Bioceramics: From concept to clinic", J. Am. Ceram. Soc. 74 (1991) 1487. https://doi.org/10.1111/j.1151-2916.1991.tb07132.x
  5. Y. Ota, T. Iwashita, T. Kasuga, Y. Abe and A. Seki, "Bone formation following implantation of fibrous compounds $(${\beta}-Ca(PO_3)_2$, CaCO_3$(Aragonite)) into bone marrow", J. Mater. Sci. 12 (2002) 895.
  6. S.H. Kwon, Y.K. Jun, S.H. Hong and H.E. Kim, "Syn-thesis and dissolution behavior of ${\beta}-TCP$ and $HA/{\beta}-TCP$ composite powders", J. Eur. Ceram. Soc. 23 (2003) 1039. https://doi.org/10.1016/S0955-2219(02)00263-7
  7. W. Suchanek and M. Yoshimura, "Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants", J. Mater. Res. 13 (1998) 94. https://doi.org/10.1557/JMR.1998.0015
  8. M.H. Cao, Y.H. Wang, C.X. Guo, Y.J. Qi and C.W. Hu, "Preparation of ultrahigh-aspect-ratio hydroxyapatite nanofibers in reverse micelles under hydrothermal conditions", Langmuir 20 (2004) 4784. https://doi.org/10.1021/la0498197
  9. H.G. Zhang, Q.S. Zhu and Y Wang, "Morphologically controlled synthesis of hydroxyapatite with partial substitution of fluorine", Chem. Mater. 17 (2005) 5824. https://doi.org/10.1021/cm051357a
  10. K. Kandori, N. Horigami, A. Yasukawa and T. Ishikawa, "Texture and formation mechanism of fibrous calcium hydroxyapatite particles prepared by decomposition of calcium-EDTA chelates", J. Am. Ceram. Soc. 80 (1997) 1157.
  11. H. Arce, M.L. Montero, A. Saenz and V.M. Castano, "Effect of pH and temperature on the formation of hydroxyapatite at low temperatures by decomposition of a Ca-EDTA complex", Polyhedron 23 (2004) 1897. https://doi.org/10.1016/j.poly.2004.04.021