Estimation on composite lognormal-Pareto distribution based on doubly censored samples

결합 로그노말-파레토 분포에서 추출된 양쪽 중도 절단된 표본을 이용한 모수추정

  • Received : 2011.01.12
  • Accepted : 2011.02.14
  • Published : 2011.03.31


With the development of the actuarial and insurance industries, the distributions of the insurance payments data are deeply studied by many authors. It is known that theses types of distribution are very highly positively skewed and have a long thick upper tail such as Pareto or lognormal distribution. In 2005, Cooray and Ananda proposed a new model which is composed lognormal distribution and Pareto distribution. They said it as composite lognormal-Preto distribution. They showed that the proposed distribution was better fitted than lognormal or Pareto distribution. On the other hand many agreements about the insurance payment have some options for a trivially small payment or extremely large one because of the limits of total payment. Appling these cases, in this paper we consider the parameter estimation on the composite lognormal-Pareto distribution based on doubly censored samples.

최근에 비약적으로 발달하는 보험 산업에 수반하여 보험금 지불 분포에 대한 연구가 활발하게 진행되고 있다. 보험금 지불금의 분포는 일반적으로 두터운 꼬리를 가지면서 좌로 치우친 왜도를 가지는 파레토 분포나 로그노말 분포로 잘 설명된다고 알려져 왔으며 Cooray와 Ananda (2005)는 이들 두 분포를 결합한 결합 로그노말-파레토분포를 제시하고 이 분포의 적합도가 높음을 보였다. 그런데 보험금 지불의 경우 보금지불 총 금액의 한도로 인하여 극단적으로 큰 보험금이나 혹은 매우 사소한 보험지불금의 경우는 옵션을 두어 예외적으로 취금하는 경우가 많다. 본 논문에서는 결합 로그노말-파레토 분포로부터 추출된 표본이 양쪽 중도 절단되어 있는 경우에 대하여 모수를 추정하는 문제를 다루어 보았다.



  1. Beirlant, J., Joossens, E. and Segers, J. (2004). Generalized Pareto fit to the society of actuaries' large claims database. North-American Actuarial Journal, 8, 108-111.
  2. Burnecki, K., Kukla, G. and Weron, R. (2000). Property insurance loss distribution. Physica A: Statistical Mechanics and its Applications, 287, 269-278.
  3. Cooray, K., and Ananda, M. M. A. (2005). Modeling actuarial data with a composite lognormal-Pareto model. Scandinavian Actuarial Journal, 2005, 321-334.
  4. Hogg, R. V. and Klugman, S. A. (1984). Loss distribution, John Wiley & Sons Inc., New York.
  5. McNeil, A. I. (1997). Estimating the tails of loss severity distribution using extreme value theory. ASTIN Bulletin, 27, 117-137.
  6. Pigeon, M. and Denuit, M. (2010). Composite lognormal-Pareto model with random threshold. Scandinavian Actuarial Journal, in press.
  7. Preda, V. and Ciumara, R. (2006). On composite models: Weibull-Pareto and lognormal-Pareto. Romanian Journal of Economic Forecasting, 2, 32-46.
  8. Resnick, S. I. (1997). Discussion of the Danish data on large fire insurance losses. ASTIN Bulletin, 27, 139-151.
  9. Scollnik, D. P. M. (2007). On composite lognormal-Pareto models. Scandinavian Actuarial Journal, 2007, 20-33.