DOI QR코드

DOI QR Code

Genetic Reassortment of Rice stripe virus RNA Segments Detected by RT-PCR Restriction Enzyme Analysis-based Method

  • Jonson, Miranda Gilda (Department of Biology, School of Science and Engineering, Ateneo de Manila University) ;
  • Lian, Sen (Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University) ;
  • Choi, Hong-Soo (Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Gwan-Seok (Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Chang-Suk (Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Kook-Hyung (Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University)
  • Received : 2011.03.22
  • Accepted : 2011.04.11
  • Published : 2011.06.30

Abstract

Our previous sequence and phylogenetic analyses of the Korean Rice stripe virus (RSV) suggested possible genetic reassortment of RNA segments, but whether this RNA variation contributed to the recent RSV outbreaks in Korea is yet unclear. To further clarify these RSV-RNA segment variations, we developed a reverse transcription-polymerase reaction/restriction enzyme (RT-PCR/RE) analysis-based method. We identified five REs, including DraI, EcoR1, NdeI/AseI, and SpeI, that could differentiate RSV RNA 1-4 subtypes, respectively. Our RT-PCR/RE results provided a clear pattern of RNA reassortment, i.e., different groups of isolates having their RNA segments derived from two to three different RSV ancestors, such as from Eastern and Southwestern Chinese or Japanese M and T isolates. We also found that the migratory small brown planthopper from Eastern China caught by aerial net traps that possesses RSV-RNA3 genotypes corresponds mainly to Eastern China, with a few for Southwestern China based on RT-PCR/RE, sequence and phylogenetic analyses, indicating that RSV populations in Eastern China may also have strong RNA variation. The development of an RE analysisbased method proved a useful epidemiological tool for rapid genotyping and identification of mixed infections by RSV strain and by different subtype.

Keywords

References

  1. Chen, Y., Chen, J., Zhang, H., Tang, X. and Du, Z. 2007. Molecular evidence and sequence analysis of a natural reassortant between Cucumber mosaic virus subgroup IA and II strains. Virus Genes 35:405-413. https://doi.org/10.1007/s11262-007-0094-z
  2. Diehl, S. R. and Bush, G. L. 1984. An evolutionary and applied perspective of insect biotypes. Annu. Rev. Entomol. 29:471-504. https://doi.org/10.1146/annurev.en.29.010184.002351
  3. Fraile, A., Alonso-Prados, J. L., Aranda, M. A., Bernal, J. J., Malpica, J. M. and Garcia-Arenal, F. 1997. Genetic exchange by recombination or reassortment is infrequent in natural populations of a tripartite RNA plant virus. J. Virol. 71:934-940.
  4. Garcia-Arenal, F., Fraile, A. and Malpica, J. M. 2003. Variation and evolution of plant virus populations. Int. Microbiol. 6:225-232. https://doi.org/10.1007/s10123-003-0142-z
  5. Gu, H., Zhang, C. and Ghabrial, S. A. 2007. Novel naturally occurring Bean pod mottle virus reassortants with mixed heterologous RNA1genomes. Phytopathology 97:79-86. https://doi.org/10.1094/PHYTO-97-0079
  6. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41:95-98.
  7. Hamamatsu, C., Toriyama, S., Toyoda, T. and Ishihama, A. 1993. Ambisense coding strategy of the rice stripe virus genome: in vitro translation studies. J. Gen. Virol. 74:1125-1131. https://doi.org/10.1099/0022-1317-74-6-1125
  8. Hemmes, H., Lakatos, L. Goldbach, R., Burgyan, J. and Prins, M. 2007. The NS3 protein of Rice hoja blanca tenuivirus suppresses RNA silencing in plant and insect hosts by efficiently binding both siRNAs and miRNAs. RNA 13:1079-1089. https://doi.org/10.1261/rna.444007
  9. Henderson, W. W., Monroe, M. C., St. Jeor, S. C., Thayer, W. P., Rowe, J. E., Peters, C. J. and Nichol, S. T. 1995. Naturally occurring Sin nombre virus genetic reassortants. Virology 214:602-610. https://doi.org/10.1006/viro.1995.0071
  10. Hibino, H. 1996. Biology and epidemiology of rice viruses. Annu. Rev. Phytopathol. 34:249-274. https://doi.org/10.1146/annurev.phyto.34.1.249
  11. Jeger, M. J., Seal, S. E. and van den Bosch, F. 2006. Evolutionary epidemiology of plant virus disease. Adv. Virus Res. 67:163-203. https://doi.org/10.1016/S0065-3527(06)67005-X
  12. Jonson, G.-M., Choi, H.-S., Kim, J.-S., Choi, I.-R. and Kim, K.-H. 2009a. Sequence and phylogenetic analyses of the RNA1 and RNA2 segments of Korean Rice stripe virus isolates and comparison with those of China and Japan. Arch. Virol. 154:1705-1708. https://doi.org/10.1007/s00705-009-0493-7
  13. Jonson, G.-M., Choi, H.-S., Kim, J.-S., Choi, I.-R. and Kim, K.-H. 2009b. Complete genome sequence of the RNAs 3 and 4 Segments of Rice stripe virus isolates in Korea and their phylogenetic relationships with Japan and China isolates. Plant Pathol. J. 25:142-150. https://doi.org/10.5423/PPJ.2009.25.2.142
  14. Kakutani, T., Hayano, Y., Hayashi, T. and Minobe, Y. 1990. Ambisense segment 4 of Rice stripe virus: Possible evolutionary relationship with phleboviruses and uukuviruses (Bunyaviridae). J. Gen. Virol. 71:1427-1432. https://doi.org/10.1099/0022-1317-71-7-1427
  15. Kakutani, T., Hayano, Y., Hayashi, T. and Minobe, Y. 1991. Ambisense segment 3 of Rice stripe virus: The first instance of a virus containing two ambisense segments. J. Gen. Virol. 72:465-468. https://doi.org/10.1099/0022-1317-72-2-465
  16. Klimov, A. I. and Cox, N. J. 1995. PCR restriction analysis of genome composition and stability of cold-adapted reassortant live influenza vaccines. J. Virol. Methods 52:41-49. https://doi.org/10.1016/0166-0934(94)00133-2
  17. Koganezawa, H. 1977. Purification and properties of rice stripe virus. Trop. Agric. Res. Ser. 10:151-154.
  18. Miranda, G. J., Azzam, O. and Shirako, Y. 2000. Comparison of nucleotide sequences between northern and southern Philippine isolates of Rice grassy stunt virus indicates occurrence of natural genetic reassortment. Virology 266:26-32. https://doi.org/10.1006/viro.1999.0068
  19. Myint, K. K. M., Yasui, H., Takagi, M. and Matsamura, M. 2009. Virulence of long-term laboratory populations of the brown planthopper, Nilaparvata lugens (Stal), and whitebacked planthopper, Sogatella furcifera (Horvath) (Homoptera: Delphacidae), on rice differential varieties. Appl. Entomol. Zool. 44:149-153. https://doi.org/10.1303/aez.2009.149
  20. Pender, J. 1994. Migration of the brown planthopper Nilaparvata lugens (Stal) with special reference to synoptic meteorology. Grana 33:112-115. https://doi.org/10.1080/00173139409427843
  21. Qu, Z., Liang, D., Harper, G. and Hull, R. 1997. Comparison of sequences of RNAs 3 and 4 of Rice stripe virus from China with those of Japanese Isolates. Virus Genes 15:99-103. https://doi.org/10.1023/A:1007901206431
  22. Rodriguez, L. L., Owens, J. H., Peters, C. J. and Nichol, S. T. 1998. Genetic reassortant among viruses causing hantavirus pulmonary syndrome. Virology 242:99-106. https://doi.org/10.1006/viro.1997.8990
  23. Roossinck, M. J. 1997. Mechanisms of plant virus evolution. Annu. Rev. Phytopathol. 35:191-209. https://doi.org/10.1146/annurev.phyto.35.1.191
  24. Takahashi, M., Toriyama, S., Hamamatsu, C. and Ishihama, A. 1993. Nucleotide sequence and possible ambisense coding strategy of rice stripe virus RNA segment 2. J. Gen. Virol. 74:769-773. https://doi.org/10.1099/0022-1317-74-4-769
  25. Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  26. Toriyama, S., Takahashi, M., Sano, Y., Shimizu, T. and Ishihama, A. 1994. Nucleotide sequence of RNA1, the largest genomic segment of rice stripe virus, the prototype of the tenuiviruses. J. Gen.Virol. 75:3569-3579. https://doi.org/10.1099/0022-1317-75-12-3569
  27. Toriyama, S. and Tomaru, K. 1995. Genus Tenuivirus. In: Murphy, F.A., Fauquet, C.M., Bishop, D. H. L., Ghabrial, S. A., Jarvis, A. W., Martelli, G. P., Mayo, M. A., Summers, M. D. ed. Virus Taxonomy Classification and Nomenclature of Viruses, Sixth Report of the International Committee on Taxonomy of Viruses. Springer, Wien.
  28. Uyeda, I., Ando, Y., Murao, K. and Kimura, I. 1995. High resolution genome typing and genomic reassortment events of rice dwarf Phytoreovirus. Virology 212:724-727. https://doi.org/10.1006/viro.1995.1531
  29. Wei, T.-Y., Yang, J.-G., Liao, F.-L., Gao, F.-L., Lu, L.-M., Zhang, X.-T., Li. F., Wu, Z.-J., Lin, Q.-Y., Xie, L.-H. and Lin, H.-X. 2009. Genetic diversity and population structure of rice stripe in China. J. Gen. Virol. 90:1025-1034. https://doi.org/10.1099/vir.0.006858-0
  30. Xiong, R., Wu, J., Zhou, Y. and Zhou, X. 2008. Identification of movement protein of Rice stripe Tenuivirus. J. Virol. 82:12304-12311. https://doi.org/10.1128/JVI.01696-08
  31. Zhang, H.-M., Yang, J., Sun, H.-R., Xin, X., Wang, H.-D., Chen, J.-P. and Adams, M. J. 2007. Genomic analysis of Rice stripe virus Zhejiang isolate shows the presence of an OTU-like domain in the RNA1 protein and a novel sequence within the intergenic regions of ambisense segments of tenuiviruses. Arch. Virol. 152:1917-1923. https://doi.org/10.1007/s00705-007-1013-2
  32. Zhu, Y., Hayakawa, T., Toriyama, S. and Takahashi, M. 1991. Complete nucleotide sequence of RNA3 of rice stripe virus: an ambisense coding strategy. J. Gen. Virol. 72:763-767. https://doi.org/10.1099/0022-1317-72-4-763
  33. Zhu, Y., Hayakawa, T. and Toriyama, S. 1992. Complete nucleotide sequence of RNA4 of rice stripe virus isolate T, and comparison with another isolate and with maize stripe virus. J. Gen. Virol. 73:1309-1312. https://doi.org/10.1099/0022-1317-73-5-1309
  34. Zhu, M., Song, Y. H., Uhm, K. B., Turner, R. W., Lee, J. H. and Roderick, G. K. 2000. Simulation of the long range migration of brown planthopper, Nilaparvata lugens (Stal), by sing boundary layer atmospheric model and the geographical information system. J. Asia-Pacific Entomol. 3: 25-32. https://doi.org/10.1016/S1226-8615(08)60051-5

Cited by

  1. Suppression of NS3 and MP is important for the stable inheritance of RNAi-mediated Rice Stripe Virus (RSV) resistance obtained by targeting the fully complementary RSV-CP gene vol.33, pp.1, 2012, https://doi.org/10.1007/s10059-012-2185-5
  2. The Complete Genome Sequence of Southern rice black-streaked dwarf virus Isolated from Vietnam vol.28, pp.4, 2012, https://doi.org/10.5423/PPJ.NT.03.2012.0035