DOI QR코드

DOI QR Code

${\beta}$-1,4-Xylosidase Activity of Leuconostoc Lactic Acid Bacteria Isolated from Kimchi

김치에서 분리된 Leuconostoc 속 젖산균의 ${\beta}$-1,4-xylosidase 효소생산 특성

  • Jang, Mi-Hee (School of Biotechnology and Bioengineering, Kangwon National University) ;
  • Kim, Myoung-Dong (School of Biotechnology and Bioengineering, Kangwon National University)
  • 장미희 (강원대학교 바이오산업공학부) ;
  • 김명동 (강원대학교 바이오산업공학부)
  • Received : 2010.10.08
  • Accepted : 2011.01.14
  • Published : 2011.04.30

Abstract

The ${\beta}$-xylosidase (EC 3.2.1.37) production capabilities of lactic acid bacteria in the genus Leuconostoc, isolated from a variety of kimchi (fermented vegetables), were examined. The intracellular levels of ${\beta}$-xylosidase were similar to the extracellular levels, when most Leuconostoc lactic acid bacteria were grown in a medium containing xylose as the carbon source. Intracellular ${\beta}$-xylosidase with a maximum activity of $1.2{\pm}0.1units/mL$ (mean${\pm}$standard error) was obtained from Leuconostoc lactis KCTC 13344, which was isolated from fermented Chinese cabbage. The optimum reaction conditions for Leu. lactis KCTC 13344 ${\beta}$-xylosidase activity were pH 6.0 and $30^{\circ}C$, and the addition of most divalent cations, except zinc, to the reaction mixture resulted in a slight increase in enzyme activity. Compared with a media containing other carbon sources, the ${\beta}$-xylosidase activity was 5 times higher when Leu. lactis KCTC 13344 was grown in a medium containing xylose as carbon source. Zymographic analysis indicated that the synthesis of Leu. lactis KCTC 13344 ${\beta}$-xylosidase (approximate size, 64 kDa) is induced by xylose. A maximum intracellular ${\beta}$-xylosidase activity of $7.1{\pm}0.3units/mL$ was obtained in a batch cultivation in an MRS medium containing 30 g/L xylose.

[ ${\beta}$ ]Xylosidase 효소활성이 높은 균주를 선발하기 위하여 다양한 김치에서 분리된 Leuconostoc 속 젖산균의 ${\beta}$-xylosidase 활성을 탐색하였다. 김치에서 분리된 55개의 Leuconostoc 속 젖산균 중 36개의 균주만이 자일로스를 탄소원으로 이용하였으며, 배추김치에서 분리된 Leu. lactis KCTC 13344 균주가 가장 높은 세포내 ${\beta}$-xylosidase 효소활성을 나타내었으며, 효소활성은 pH 6, $30^{\circ}C$ 반응조건에서 가장 높게 나타났다. $Zn^{2+}$을 제외한 금속이온은 효소활성을 유의적으로 증가시켰으며, $Fe^{2+}$은 1 mM의 농도에서 ${\beta}$-xylosidase 대조구와 비교하여 효소활성을 약 40% 증가시켰다. 균주를 배양할 때 사용한 탄소원 중 자일로스가 가장 높은 효소활성을 나타내었고, 효소활성을 위한 최적의 자일로스 농도는 30 g/L였다. 단백질 전기영동 및 활성염색을 수행한 결과 분자량이 약 64 kDa인 Leu. lactis KCTC 13344 균주의 ${\beta}$-xylosidase는 자일로스에 의하여 발현이 유도되는 것으로 추정되었다. 자일로스가 30 g/L의 농도로 첨가된 MRS 배지에서 Leu. lactis KCTC 13344 균주의 성장은 20시간 후에 최고에 도달하였고, ${\beta}$-xylosidase 효소활성은 16시간 후에 최대 $7.1{\pm}0.3units/mL$이었다. 배양 초기에 주입한 자일로스는 약 20% 정도 소모하였고, 젖산과 아세트산은 3.0 g/L 수준으로 생성되었지만 에탄올은 생성되지 않았다.

Keywords

References

  1. Kim MJ, Kim GR. In vitro evaluation of cholesterol reduction by lactic acid bacteria extracted from kimchi. Korean J. Culin. Res. 12: 259-268 (2006)
  2. Gill HS. Probiotics to enhance anti-infective defences in the gastrointestinal tract. Best Pract. Res. Cl. Ga. 17: 755-773 (2003) https://doi.org/10.1016/S1521-6918(03)00074-X
  3. Jayaprakasha HM, Yoon YC, Paik HD. Probiotic functional dairy foods and health claims: an overview. Food Sci. Biotechnol. 14: 523-528 (2005)
  4. Saarela M, Lahteenmaki L, Crittenden R, Salminen S, Mattila-Sandholm T. Gut bacteria and health foods- the European perspective. Int. J. Food Microbiol. 78: 99-117 (2002) https://doi.org/10.1016/S0168-1605(02)00235-0
  5. Seo JH, Lee H. Characteristics and immunomodulating activity of lactic acid bacteria for the potential probiotics. Korean J. Food Sci. Technol. 39: 681-687 (2007)
  6. Sunna A, Antranikian G. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67 (1997) https://doi.org/10.3109/07388559709146606
  7. Ernest K, Yu C, Deschatelets L, Saddler JN. The combined enzymatic hydrolysis and fermentation of hemicellulose to 2,3-butanediol. Appl. Microbiol. Biot. 19: 365-372 (1984). https://doi.org/10.1007/BF00454370
  8. Meyrial V, Delgenes JP, Moletta R, Navarro JM. Xylitol production from D-xylose by Candida guillermondii: fermentation behaviour. Biotechnol. Lett. 13: 281-286 (1991) https://doi.org/10.1007/BF01041485
  9. Song HS, Choi YJ. Production of xylanase by Bacillus stearothermophilus. Korean J. Appl. Microbiol. Bioeng. 17: 289-294 (1989)
  10. Gong CS, Chen LF, Flickinger MC, Tsao GT. Conversion of hemicellulose carbohydrates. Adv. Biochem. Eng. Biotechnol. 20: 93-118 (1981)
  11. Eliasson A, Hofmeyr JHS, Pedler S, Hahn-Hagerdal B. The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb. Technol. 29: 288-297 (2001) https://doi.org/10.1016/S0141-0229(01)00386-6
  12. Martin C, Galbe M, Wahlbom CF, Hahn-Hagerdal B, Jonsson LJ. Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb. Tech. 31: 274-282 (2002) https://doi.org/10.1016/S0141-0229(02)00112-6
  13. Dien BS, Hespell RB, Wyckoff HA, Bothast RJ. Fermentation of hexose and pentose sugars using a novel ethanologenic Escherichia coli strain. Enzyme Microb. Tech 23: 366-371 (1998) https://doi.org/10.1016/S0141-0229(98)00064-7
  14. Dien BS, Nichols NN, O'Bryan PJ, Bothast RJ. Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl. Biochem. Biotech. 84-86: 181-196 (2000) https://doi.org/10.1385/ABAB:84-86:1-9:181
  15. Ohara H, Owaki M, Sonomoto K. Xylooligosaccharide fermentation with Leuconostoc lactis. J. Biosci. Bioeng. 101: 415-420 (2006) https://doi.org/10.1263/jbb.101.415
  16. Godden B, Legon T, Helvenstein P, Penninckx M. Regulation of the production of hemicelluloytic and cellulolytic enzymes by a Streptomyces sp. growing on lignocellulose. J. Gen. Microbiol. 135: 285-292 (1989)
  17. Wong KKY, Saddler JN. Trichoderma xylanases, their properties and application. Crit. Rev. Biotechnol. 12:413-435 (1992) https://doi.org/10.3109/07388559209114234
  18. Kristufek D, Zeilinger S, Kubicek CP. Regulation of $\beta$-xylosidase formation by xylose in Trichoderma reesei. Appl. Microbiol. Biot. 42: 713-717 (1995) https://doi.org/10.1007/BF00171950
  19. Saha BC. Hemicellulose bioconversion. J. Ind. Microbiol. Biot. 30: 279-291 (2003) https://doi.org/10.1007/s10295-003-0049-x
  20. Nanmori T, Watanabe T, Shinke R, Kohno A, Kawamura Y. Purification and properties of thermostable xylanase and $\beta$-xylosidase produced by a newly isolated Bacillus stearothermophilus strain. J. Bacteriol. 172: 6669-6672 (1990)
  21. Saxena S, Fierobe HP, Gaudin C, Guerlesquin F, Belaich JP. Biochemical properties of a $\beta$-xylosidase from Clostridium cellulolyticum. Appl. Environ. Microb. 61: 3509-3512 (1995)
  22. Lee TH, Lim PO, Lee YE. Regulation of $\beta$-xylosidase biosynthesis in Paenibacillus sp. DG-22. J. Life Sci. 17: 407-411 (2007) https://doi.org/10.5352/JLS.2007.17.3.407
  23. Sambrook J, Russell DW. Molecular Cloning a Laboratory Manual. Vol. 3. Cold Spring Harbor Laboratory Press. New York. NY. USA. pp. A 8.40-A 8.51 (2001)
  24. Ko JL, Oh CK, Oh MC, Kim SH. Isolation and Identification of lactic acid bacteria from commercial kimchi. J. Korean Soc. Food Sci. Nutr. 38: 732-741 (2009) https://doi.org/10.3746/jkfn.2009.38.6.732
  25. Flores ME, Perea M, Rodriguez O, Malvaez A, Huitron C. Physiological studies on induction and catabolite repression of $\beta$-xylosidase and endoxylanase in Streptomyces sp. CH-M-1035. J. Biotechnol. 49: 179-187 (1996) https://doi.org/10.1016/0168-1656(96)01542-8
  26. Yu JW, Kim HK, Kim CK, Lim JY. Characterization of $\beta$-xylosidase from Pseudomonas sp. CB-33. Korean J. Appl. Microbiol. Biotechnol. 24: 197-205 (1996)
  27. Lee HJ, Choi YD, Han MH. Studies of hemicellulase system in Aspergillus niger-purification and characterization of $\beta$-xylosidase. Korean J. Appl. Microbiol. Biotechnol. 11: 93-100 (1983)
  28. Kang DH, Lee KH, Ji GE. Production of $\beta$-xylosidase from Bifidobacterium sp. Int-57. Korean J. Food Sci. Technol. 25: 89-93 (1993)

Cited by

  1. Changes in antioxidant activities and volatile compounds of mixed berry juice through fermentation by lactic acid bacteria vol.26, pp.2, 2017, https://doi.org/10.1007/s10068-017-0060-z