DOI QR코드

DOI QR Code

Virulent Bacteriophage for Growth Inhibition of Cronobacter sakazakii and Salmonella enterica Typhimurium

용균성 박테리오파지에 의한 Cronobacter sakazakii와 Salmonella enterica Typhimurium의 생육저해

  • 이영덕 (경원대학교 식품생물공학과) ;
  • 박종현 (경원대학교 식품생물공학과)
  • Received : 2010.12.14
  • Accepted : 2011.02.21
  • Published : 2011.04.30

Abstract

Cronobacter sakazakii and Salmonella enterica Typhimurium are hazardous pathogens, especially for ready-toeat foods. For control of pathogens, the virulent bacteriophages were isolated, identified, and applied to infant formula milk and vegetable juice. The phages were isolated from swine feces and identified by morphology and molecular characteristics. ES2 phage for C. sakazakii and ST2 phage for S enterica Typhimurium were identified as Myoviridae and Siphoviridae, respectively. Their burst sizes were $52{\pm}5PFU/cell$ for ES2 phage and $21{\pm}3PFU/cell$ for ST2 phage after latent period of 30-40 minutes. ST2 phage showed higher heat stability at $60^{\circ}C$ than ES2 phage. ES2 phage held the growth of C. sakazakii untill 6 hr afterwhich the number decreased when applied to the infant formula milk and vegetable juice. ST2 phage also showed growth inhibition so that the number of S. enterica Typhimurium decreased. Therefore, virulent bacteriophages might be an agent for the growth inhibition of C. sakazakii and S. enterica Typhimurium in such the ready-to-eat foods.

즉석 편이식품에서 위해도가 가장 큰 C. sakazakii와 S. enterica Typhimurium을 박테리오파지로 제어하기 위하여 용균성 박테리오파지를 분리, 동정하였고 조제분유와 채소 주스에 이들 세균에 적용하여 그의 효과를 분석하였다. 박테리오 파지는 돼지 분변에서 C. sakazakii와 S. enterica Typhimurium균을 용해시키는 박테리오파지를 분리하였고 현미경과 그의 특성을 분석, 동정하였다. Cronobacter에 작용하는 ES2 파지와 Salmonella의 ST2 파지는 형태학적 특성이 각각 Myoviridae와 Siphoviridae로 각각 동정되었으며 제한효소지도와 SDS-PAGE 분석에 의하여 서로 다른 파지임을 확인하였다. ES2 파지의 경우 latent period는 약 40분 정도였으며, ST2 파지는 약 30분 정도를 나타냈으며, burst size는 ES2 파지는 약 $52{\pm}5PFU/cell$, ST2 파지는 약 $21{\pm}3PFU/cell$로 나타났다. 열안정성은 $60^{\circ}C$에서 ST2 파지의 경우 100분 동안 안정한 것으로 나타났으나, ES2 파지는 30분 이후부터는 확인되지 않았다. 따라서 ST2 파지가 ES2 파지에 비해 열안정성이 높은 것을 알 수 있었다. 이 분리 파지를 조제분유와 채소 주스에 직접 적용한 효과는 ES2에 의한 Cronobacter 제어는 접종 후 6시간까지는 균수가 일정하게 유지하였고 균의 증식을 일어나지 않는 것으로 나타났다. ST2 파지에 의한 Salmonella는 생육저해가 잘 일어나 접종시간이 지남에 따라 균수가 감소하는 것을 확인하였다. 그러므로 C. sakazakii와 S. enterica Typhimurium의 생육저해는 이들 용균성 박테리오파지를 활용하여 가능한 것으로 보인다.

Keywords

References

  1. Korea Food & Drug Administration. http://www.kfda.go.kr. Accessed Dec. 18, 2009.
  2. CAC. Proposed draft revision of the recommended international code of practice for foods for infants and children. Available at: ftp://ftp.fao.org/codex/ccfh37/fh3704e.pdf. Accessed Dec. 02, 2009.
  3. Farmer JJ, Asbury MA, Hickman FW, Brenner DJ. The Enterobacteriaceae study group, Enterobacter sakazakii: A new species of "Enterobacteriaceae" isolated from clinical specimens. Int. J. Syst. Bacteriol. 30: 569-584 (1980) https://doi.org/10.1099/00207713-30-3-569
  4. Jung MK, Park JH. Prevalence and thermal stability of Enterobacter sakazakii from unprocessed ready-to-eat agricultural products and powdered infant formulas. Food Sci. Biotechnol. 15: 152-157 (2006)
  5. Iversen C, Forsythe SJ. Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula. Food Sci. Technol. 14: 443-454 (2003) https://doi.org/10.1016/S0924-2244(03)00155-9
  6. Iversen C, Forsythe SJ. Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula. Food Sci. Technol. 14: 443-454 (2003) https://doi.org/10.1016/S0924-2244(03)00155-9
  7. Iversen C, Lehner A, Mullane N, Bidlas E, Cleenwerck I, Marugg J, Fanning S, Stephan R, Joosten H. The taxonomy of Enterobacter sakazakii: Proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov., Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. Malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp.nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evol. Biol. 7: 64-67 (2007) https://doi.org/10.1186/1471-2148-7-64
  8. Nzzarowec-White M, Farber JM. Thermal resistance of Enterobacter sakazakii in rehydrated dried-infant formula. Lett. Appl. Microbiol. 24: 9-13 (1997) https://doi.org/10.1046/j.1472-765X.1997.00328.x
  9. Edelson-Mammel SG, Buchanan RL. Thermal inactivation of Enterobacter sakazakii in rehyrdated infant formula. J. Food Prot. 67: 60-63 (2004)
  10. Kim SH, Park JH. Thermal resistance and inactivation of Enterobacter sakazakii isolates during rehydration of powdered infant formula. J. Microbiol. Biotechnol. 17: 364-368 (2007)
  11. Food and Agriculture Organization-World Health Organization (FAO-WHO) Enterobacter sakazakii and Salmonella in powdered infant formula: Meeting report. p38. In: Microbiological Risk Assessment Series 10. Geneva and Rome. WHO Press, Geneva, Switzerland (2006)
  12. National Advisory Committee on Microbiological Criteria for Foods (NACMCF). Microbiological safety evaluations and recommendations on sprouted seeds. Int. J. Food Microbiol. 52: 123-153 (1999) https://doi.org/10.1016/S0168-1605(99)00135-X
  13. Kusumaningrum HD, van Asselt ED, Beumer RR, Zwietering MH. A quantitative analysis of cross-contamination of Salmonella and Campylobacter spp. via domestic kitchen surfaces. J. Food Prot. 67: 1892-1903 (2004)
  14. Bornemann R, Zerr DM, Heath J, Koehler J, Grandjean M, Pallipamu R, Duchin J. An outbreak of Salmonella serotype Saintpaul in a children's hospital. Infect. Cont. Hosp. Ep. 23: 671-676 (2002) https://doi.org/10.1086/501992
  15. Olsen SJ, Bishop R, Brenner FW, Roels TH, Bean N, Tauxe RV, Slutsker L. The changing epidermiology of Salmonella: Trends in serotypes isolated from humans in the United States 1987-1997. J. Infect. Dis. 183: 753-761 (2001) https://doi.org/10.1086/318832
  16. Threlfall EJ, Ward LR, Hampton MD, Ridley AM, Rowe B, Roberts D, Gilbert RJ, Van Soneren P, Wall PG, Grimont P. Molecular fingerprinting defines a strain of Salmonella enterica serotype Anatum responsible for an international outbreak associated with formula-dried milk. Epidemiol. Infect. 121: 289-293 (1998) https://doi.org/10.1017/S0950268898001149
  17. Muytjens HL, Roelofs-Willemse H, Jaspar GHJ. Quality of powdered substitutes for breast milk with regard to members of the family Enterobacteriaceae. J. Clin. Microbiol. 26: 743-746 (1988)
  18. Brussow A, Kutter E. Phage Ecology. CRC Press, Boca Raton, FL, USA. pp. 129-163 (2005)
  19. Modi R, Hirvi Y, Hill A, Griffiths MW. Effect of phage on survival of Salmonella enteritidis during manufacture and storage of Cheddar cheese made from raw and pasteurized milk. J. Food Prot. 64: 927-933 (2001)
  20. Whichard JM, Sriranganathan N, Pierson FW. Suppression for Salmonella growth by wild-type and large-plaque variants of bacteriophage Felix O1 in liquid culture and on chicken frankfurters. J. Food Prot. 66: 220-225 (2003)
  21. Atterbury RJ, Dillon E, Swift C, Connerton PL, Frost JA, Dodd CE. Correlation of Campylobacter bacteriophage with reduced presence of hosts in broiler chicken ceca. Appl. Environ. Microbiol. 71: 4885-4887 (2005) https://doi.org/10.1128/AEM.71.8.4885-4887.2005
  22. Martinez B, Obeso JM, Rodriguez A, Garcia P. Nisin-bacteriohage cross resistance in Staphylococcus aureus. Int. J. Food Microbiol. 122: 253-258 (2008) https://doi.org/10.1016/j.ijfoodmicro.2008.01.011
  23. Kim KP, Klumpp J, Loessner MJ. Enterobacter sakazakii bacteriophages can prevent bacterial growth in reconstituted infant formula. Int. J. Food Microbiol. 115: 195-203 (2007) https://doi.org/10.1016/j.ijfoodmicro.2006.10.029
  24. Sambrook, J, Russell DW. Molecular cloning: A laboratory manual. 3rd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA (2001)
  25. Kropinski AM, Sulakvelidze A, Konczy P, Poppe C. Salmonella phages and prophages-genomics and practical aspects. Method Mol. Biol. 394: 133-175 (2007) https://doi.org/10.1007/978-1-59745-512-1_9
  26. Atterbury RJ, Van Bergen MA, Ortiz F, Lovell MA, Harris JA, De Boer A, Wagenaar JA, Allen VM, Barrow PA. Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Appl. Environ. Microbiol. 73: 4543-4549 (2007) https://doi.org/10.1128/AEM.00049-07
  27. Callaway TR, Edrington TS, Brabban A, Kutter B, Karriker L, Stahl C, Wagstrom E, Anderson R, Poole TL, Genovese K, Krueger N, Harvey R, Nisbet DJ. Evaluation of phage treatment as a strategy to reduce Salmonella populations in growing Swine. Foodborne Pathog. Dis. 8: 261-266 (2011) https://doi.org/10.1089/fpd.2010.0671
  28. Higgins JP, Higgins SE, Guenther KL, Huff W, Donoghue AM, Donoghue DJ, Hargis BM. Use of a specific bacteriophage treatment to reduce Salmonella in poultry products. Poultry Sci. 84: 1141-1145 (2005) https://doi.org/10.1093/ps/84.7.1141
  29. Sklar IB, Joerger RD. Attempts to utilize bacteriophage to combat Salmonella enterica serovar Enteritidis infection in chickens. J. Food Safety 21: 15-30 (2001) https://doi.org/10.1111/j.1745-4565.2001.tb00305.x