DOI QR코드

DOI QR Code

점성액체 기포탑에서 탑의 직경이 기포, wake 및 연속액상 체류량에 미치는 영향

Effects of Column Diameter on the Holdups of Bubble, Wake and Continuous Liquid Phase in Bubble Columns with Viscous Liquid Medium

  • 임대호 (충남대학교 화학공학과) ;
  • 장지화 (충남대학교 화학공학과) ;
  • 강용 (충남대학교 화학공학과) ;
  • 전기원 (한국화학연구원, 그린화학연구단)
  • Lim, Dae Ho (School of Chemical Engineering, Chungnam National University) ;
  • Jang, Ji Hwa (School of Chemical Engineering, Chungnam National University) ;
  • Kang, Yong (School of Chemical Engineering, Chungnam National University) ;
  • Jun, Ki Won (Green Chemical Technology Division, Korea Research Institute of Chemical Technology)
  • 발행 : 2011.10.01

초록

점성액체 기포탑에서 기포, wake 및 연속액상들의 체류량 특성을 고찰하였다. 기포탑의 직경(0.051, 0.076, 0.102 and 0.152 m ID), 기체 유속(0.02~0.16 m/s) 그리고 연속액상의 점도(0.001~0.050 $Pa{\cdot}s$)가 기포, wake 및 연속액상의 체류량에 미치는 영향을 검토하였다. 기포, wake 그리고 연속액상들은 이중 전기 저항탐침방법에 의하여 성공적으로 구별할 수 있었다. 압축된 여과공기와 물 또는 CMC 수용액을 각각 기체와 연속액상으로 사용하였다. 기포탑에서 기포와 wake 상들을 연속적으로 검침하기위해 자료수집장치(DT 2805 Lab Card)와 컴퓨터를 사용하였다. 탐침 써키트로부터 수집된 아날로그 자료는 디지털 자료로 변환되었으며, 이들 자료를 이용하여 기포탑에서 상승하는 단일기포 뿐만이 아니라 다중기포들의 후면에서 wake 상을 검침할 수 있었다. 기포와 wake 상의 체류량은 각각 기포탑의 직경과 연속액상의 점도가 증가함에 따라 감소하였으나 연속액상의 체류량은 증가하였다. 그러나, 기포와 wake의 체류량은 각각 기체 유속이 증가함에 따라 증가한 반면 연속액상의 체류량은 감소하였다. wake 상 체류량에 대한 기포 체류량의 비율은 기포탑의 직경 또는 기체의 유속이 증가함에 따라 감소한 반면 연속액상의 점도가 증가함에 점성액체 기포탑에서 기포, wake 그리고 연속액상의 체류량은 본 연구의 실험범위에서 다음과 같은 실험변수의 상관식으로 나타낼 수 있었다. ${\varepsilon}_B=0.043D^{-0.18}U_G^{0.56}{\mu}_L^{-0.13}$, ${\varepsilon}_W=0.003D^{-0.85}U_G^{0.46}{\mu}_L^{-0.10}$, ${\varepsilon}_C=1.179D^{0.09}U_G^{-0.13}{\mu}_L^{0.04}$.

Holdup characteristics of bubble, wake and continuous liquid phases were investigated in bubble columns with viscous liquid media. Effects of column diameter(0.051, 0.076, 0.102 and 0.152 m ID), gas velocity($U_G$=0.02~0.16 m/s) and liquid viscosity(${\mu}_L$=0.001~0.050 $Pa{\cdot}s$) of continuous liquid media on the holdups of bubble, wake and continuous liquid phases were discussed. The three phase such as bubble, wake and continuous liquid phases were classified successfully by adapting the dual electrical resistivity probe method. Compressed filtered air and water or aqueous solutions of CMC(Carboxy Methyl Cellulose) were used as a gas and a liquid phase, respectively. To detect the wake as well as bubble phases in the bubble column continuously, a data acquisition system(DT 2805 Lab Card) with personal computer was used. The analog signals obtained from the probe circuit were processed to produce the digital data, from which the wake phase was detected behind the multi-bubbles as well as single bubbles rising in the bubble columns. The holdup of bubble and wake phases decreased but that of continuous liquid media increased, with an increase in the column diameter or liquid viscosity. However, the holdup of bubble and wake phases increased but that of continuous media decreased with an increase in the gas velocity. The holdup ratio of wake to wake to bubble phase decreased with an increase in the column diameter or gas velocity, however, increased with an increase in the viscosity of con-tinuous liquid media. The holdups of bubble, wake and continuous liquid media could be correlated in terms of operating variables within this experimental conditions as: ${\varepsilon}_B=0.043D^{-0.18}U_G^{0.56}{\mu}_L^{-0.13}$, ${\varepsilon}_W=0.003D^{-0.85}U_G^{0.46}{\mu}_L^{-0.10}$, ${\varepsilon}_C=1.179D^{0.09}U_G^{-0.13}{\mu}_L^{0.04}$.

키워드

참고문헌

  1. Fan, L. S. and Tsuchiya, K., "Bubble Dynamics in Liquids and Liquid-solid Suspension," Stoneham, MA, Butherworth Heinemann (1990).
  2. Deckwer, W. D., "Bubble Column Reactors," John Wiley and Sons Ltd.(1992).
  3. Krishna, R. and Sie, S. T., "Design and Scale-up of the Fischer- Tropsh Bubble Column Slurry Reactor," Fuel Processing Technol., 64, 73-105(2000). https://doi.org/10.1016/S0378-3820(99)00128-9
  4. Van Baten, J. M., Ellenberger, J. and Krishma, R., "Scale-up Strategy for Bubble Column Slurry Reactors Using CFD Simulations," Catal. Today, 79-80, 259(2003). https://doi.org/10.1016/S0920-5861(03)00048-8
  5. Seo, M. J., Lim, D. H., Jin, H. R., Kang, Y., Jung, H. and Lee, H. T., "Analysis of Hydrodynamic Similarity of Pressurized Three-phase Slurry Bubble Column for Its Design and Scale-up," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 47, 720(2009).
  6. Jang, J. H., Seo, M. J., Lim, D. H., Kang, Y., Jung, H. and Lee, H. T., "Heat Transfer Model and Energy Dissipation Rate in Bubble Columns with Continuous Operation," Korean Chem. Emg. Res.(HWAHAK KONGHAK), 47, 587(2009).
  7. Seo, M. J., Lim, D. H., Shin, I. S., Son, S. M. and Kang, Y., "Mass Transfer Characteristics in Pressurized Three-phase Slurry Bubble Columns with Variation of Column Diameter," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 47, 459(2009).
  8. Shin, I. S., Son, S. M., Kim, U. Y., Kang, Y., Kim, S. D. and Jung, H., "Multiple Effects of Operating Variables on the Bubble Properties in Three-phase Slurry Bubble Columns," KJChE, 26, 587-591(2009).
  9. Kim, S. D. and Kang, Y., "Dispersed Phase Characteristics in Three-phase Fluidized Beds," Mixed-flow Hydrodynamics, Advances in Engineering Fluid Mechanics, Gulf Pub. Co., New York, U.S.A. (1996).
  10. Kim, S. D. and Kang, Y., "Heat and Mass Transfer in Three-phase Fluidized-bed Reactors - an Overview," Chem. Eng. Sci., 52, 3639 (1997). https://doi.org/10.1016/S0009-2509(97)00269-8
  11. Kang, Y., Lee, K. I., Shin, I. S., Son, S. M., Kim, S. D. and Jung, H., "Characteristics of Hydrodynamics, Heat and Mass Transfer in Three-phase Inverse Fluidized Beds," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 46, 451(2008).
  12. Funfschilling, D. and Li, H. Z., "Flow of Non-newtonian Fluids Around Bubbles: PIV Measurements and Birefringence Visualization," Chem. Eng. Sci., 56, 1137(2001). https://doi.org/10.1016/S0009-2509(00)00332-8
  13. Sousa, R. G., Riethmuller, M. L., Pinto, A. M. F. R. and Campos, J. B. L. M., "Flow Around Individual Taylor Bubbles Rising In Stagnant CMC Solutions: PIV Measurements," Chem. Eng. Sci., 60, 1859(2005). https://doi.org/10.1016/j.ces.2004.11.035
  14. Nogueira, S., Riethmuller, M. L., Campos, J. B. L. M. and Pinto, A. M. F. R., "Flow Patterns in the Wake of a Taylor Bubble Rising Through Vertical Columns of Stagnant and Flowing Newtonian Liquids: An Experimental Study," Chem. Eng. Sci., 61, 7199 (2006). https://doi.org/10.1016/j.ces.2006.08.002
  15. Celata, G. P., Cumo, M., D'Annibale, F. and Tomiyama, A., "The Wake Effect on Bubble Rising Velocity in One-component Systems," Int'l J. Multiphase Flow, 30, 939-961(2006).
  16. Lertnuwat, B. and Bunyajitradulya, A., "Effects of Interfacial Shear Condition and Tailing - Corner Radius on the Wake Vortex of a Bubble," Nuclear Eng. Des., 237, 1526-1533(2007). https://doi.org/10.1016/j.nucengdes.2006.12.012
  17. Chen, R, C. and Chou, I. S., "Wake structure of a single bubble rising in a two-dimensional column," Expt. Therm. Fluid Sci., 17, 165-178(1998). https://doi.org/10.1016/S0894-1777(98)00003-X
  18. Chen, R. C., Wang, F. M. and Lim, T. J., "Bubble Wake Dynamics of a Single Bubble Rising in a Two-dimensional Liquid-solid Fluidized Bed," Chem. Eng. Sci., 54, 4831 (1999). https://doi.org/10.1016/S0009-2509(99)00201-8
  19. Li, Y., Zhang J. and Fan, L. S., "Numerical Simulation of Gasliquid- solid Fluidization Systems Using a Combined CFD-VOFDPM Method: Bubble Wake Behavior," Chem. Eng. Sci., 54, 5101 (1999). https://doi.org/10.1016/S0009-2509(99)00263-8
  20. Tsuchiya, K. and Fan, L. S., "Prediction of Solid Concentration Profiles in Three-phase Reactors by a Wake Shedding Model," Chem. Eng. Sci., 43, 1167(1988). https://doi.org/10.1016/0009-2509(88)85077-2
  21. Kitano, K. and Fan, L. S., "Near-wake Structure of a Single Gas Bubble in a Two-dimensional Liquid-solid Fluidized Bed : Solid Holdup," Chem. Eng. Sci., 43, 1355-1361(1988). https://doi.org/10.1016/0009-2509(88)85108-X
  22. Jang, J. H., Lim, D. H., Kang, Y. and Jun, K. W., "Holdup Characteristics of Three Functional Regions in a Slurry Bubble Column," Korean Chem. Emg. Res.(HWAHAK KONGHAK), 48, 359-364(2010).
  23. Son, S. M., Kang, S. H., Kim, U. Y., Kang, Y. and Kim, S. D., "Bubble Properties in Three-phase Inverse Fluidized Beds with Viscous Liquid Medium," Chem. Eng. Processing, 46, 736-741 (2007). https://doi.org/10.1016/j.cep.2006.10.002