DOI QR코드

DOI QR Code

Removals of PAH-quinones Using Birnessite-Mediated Oxidative-Transformation Processes

망간산화물(Birnessite)을 매개로한 산화-변환반응을 이용한 PAH-퀴논화합물의 제거

  • Choi, Chan-Kyu (Department of Energy and Environment, The Graduate School of Energy and Environment, Seoul National University of Science and Technology) ;
  • Harn, Yoon-I (Department of Energy and Environment, The Graduate School of Energy and Environment, Seoul National University of Science and Technology) ;
  • Kim, Seong-Uk (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Shin, Hyun-Sang (Department of Environmental Engineering, Seoul National University of Science and Technology)
  • 최찬규 (서울과학기술대학교 에너지환경대학원 에너지환경공학과) ;
  • 한윤이 (서울과학기술대학교 에너지환경대학원 에너지환경공학과) ;
  • 김성욱 (서울과학기술대학교 환경공학과) ;
  • 신현상 (서울과학기술대학교 환경공학과)
  • Received : 2011.06.02
  • Accepted : 2011.06.26
  • Published : 2011.06.30

Abstract

An investigation on the removals of PAH-quinone compounds, which are commonly produced from the biological and/or chemical treatments of PAH-contaminated soils, from the aqueous phase via birnessite (${\delta}-MnO_2$)-mediated oxidative transformation is described. It was demonstrated that acenaphthenequinone (APQ), p-PAH quinone can be removed via birnessite-mediated oxidative-coupling reactions, and anthraquinone (AQ) and 1,4-naphthoquinone (1,4-NPQ), o-PAH quinones were efficiently removed by birnessite-mediated cross-coupling reactions in the presence of catechol (CAT) as a reactive mediator. The removals of PAH-quinone compounds followed pseudo-first-order reactions, and the rate constant (k, $hr^{-1}$) for the removals of 1,4-NPQ under the experiment conditions (1,4-NPQ = 10 mg/L, CAT = 50 mg/L, ${\delta}-MnO_2$ = 1.0 g/L, pH 5, Reaction time = 6~96 hr) was 0.0426, which was about 4 times lower than that of APQ (0.173). With the observed pseudo-first order rate constants with respect to birnessite loadings under the same experimental conditions, the surface-normalized specific rate constant, $K_{surf}$, for 1,4-NPQ was determined to be $8.5{\times}10^{-4}L/m^2{\cdot}hr$. The analysis of the kinetic data with respect to birnessite loading indicated that the cross-coupling reactions of 1,4-NPQ consist of two different reaction steps over time and the results have also been discussed in terms of the reaction mechanisms.

본 연구에서는 PAHs 오염토양의 화학적 생물학적 처리과정에서 반응부산물로 흔히 발견되는 PAH-퀴논화합물을 대상으로 수용액 상에서의 망간산화물에 의한 산화-변환 제거 특성(제거율, 반응속도)을 조사하였다. 반응시간 경과에 따른 상등액의 HPLC 분석결과로부터 p-퀴논화합물인 Acenaphthenequinone (APQ)는 망간산화물 자체에 의한 산화-결합 반응을 통해 제거되며, o-퀴논화합물인 Anthraquinone (AQ)와 1,4-Naphthoquinone (1,4-NPQ)는 반응매개체(Catechol) 존재 하에서의 교차-결합반응을 통해 효과적으로 제거 가능함을 확인하였다. 망간산화물에 의한 PAH-퀴논화합물의 제거는 유사-일차 반응 속도식을 따랐으며, 본 실험조건(1,4-NPQ = 11.5 mg/L, CAT = 50 mg/L, $MnO_2$ = 1.0 g/L, pH 5, 반응시간 = 6~96 hr)에서의 1,4-NPQ의 교차-결합 반응속도상수(k, $hr^{-1}$)는 0.0426으로 APQ의 산화-결합 반응속도 상수(0.173)에 비교해 약 4배 정도의 차이를 보였다. 동일조건에서의 망간산화물 주입량별 속도상수를 망간산화물의 비표면적으로 표준화하여 얻은 1,4-NPQ의 교차-결합 반응에 대한 비표면적표준화속도상수($K_{surf}$)는 $8.5{\times}10^{-4}L/m^2{\cdot}hr$이었다. 망간산화물 주입량별 제거특성과 반응 속도상수의 비교 해석 결과로부터 1,4-NPQ의 교차-결합 반응은 반응시간 경과에 따라 서로 다른 반응기작을 거침을 확인하였으며, 이를 기존 문헌결과와 함께 해석하였다.

Keywords

References

  1. Edwards, N. T., "Polycyclic aromatic hydrocarbons (PAH's) in the terrestrial environment: a review," J. Environ. Qual., 12(4), 427-441(1983).
  2. Lundstedt, S., "Analysis of PAHs and their transformation products in contaminated soil and remedial processes," Ph. D thesis, Umea Univ., Sewden(2003).
  3. Freeman, H. M. and Harris, E. F., "Hazardous Waste Remediation. Innovative treatment technologies, Technomic Publishing Company, Lancaster, Pennsylvania, USA(1995).
  4. Eriksson, M., Dalhammar, G. and Borg-Karlsson, A. K., "Biological degradation of selected hydrocarbons in an old PAH/creosote contaminated soil from a gasworks site," Appl. Microbiol. Biotechnol., 53, 619-626(2000). https://doi.org/10.1007/s002530051667
  5. Ferrarese, E., Andreottola, G. and Oprea, I. A., "Remediation of PAH-contaminated sediments by chemical oxidation," J. Hazard. Mater., 152(1), 128-139(2007).
  6. Sehlin, E., "A study of the availability of PAHs and oxygenated PAHs in a contaminated soil," Degree Project in Chemistry, Umea Univ., Sweden(2004).
  7. Mallakin, A., McConkey, B. J., Miao, G. B., McKibben, B., Snieckus, V., Dixon, D. G. and Greenberg, B. M., "Impacts of structural photomodification on the toxicity of environmental contaminants: Anthracene photooxidation products," Ecotoxicol. Environ, Safe., 43, 204-212(1999). https://doi.org/10.1006/eesa.1999.1764
  8. Shindo, H. and Huang, P. M., "Significance of Mn (IV) oxide in abiotic formation of organic nitrogen complexes in natural environment," Nature (London), 308, 57-58(1984). https://doi.org/10.1038/308057a0
  9. Bollag, J. M., Myers, C., Pal, S. and Huang, P. M. "The role of abiotic and biotic catalysts in the transformation of phenol compounds," In Environmental Impact of Soil Components Interactions: Natural and Anthropogenic Organics (P. M. Haung, J. Berthelin, J. M. Boallg, W. B. McGill, A. L. Pake eds.), CRC Press, Boca Raton, FL, pp. 299-310 (1995).
  10. Shindo, H. and Huang, P. M., "Role of Mn (IV) oxide in abiotic formation of humic substances in the environment," Nature (London), 298, 363-365(1982). https://doi.org/10.1038/298363a0
  11. Weber, Jr., W. J. and Huang, Q., "Inclusion of persistent organic pollutants in humification processes: direct chemical incorporation of phenanthrene via oxidative coupling," Environ. Sci. Technol., 37, 4221-4227(2003). https://doi.org/10.1021/es030330u
  12. Blalk, H. M., Simpson, A. J. and Pedersen, J. A., "Crosscoupling of sulfamide antimicrobial agents with model humic constituents," Environ. Sci. Technol., 39, 4463-4473(2005). https://doi.org/10.1021/es0500916
  13. Kang, K. H., Dec, J., Park, H. and Bollag, J.-M., "Effect of phenolic mediators and humic acid on cyprodinil transformation in the presence of birnessite," Water Res., 38(11), 2737-2745(2004). https://doi.org/10.1016/j.watres.2004.03.018
  14. Leenheer, J. A.,. McKnight, D. M., Thurman, E. M. and MacCarthy, P., Humic Substances in the Suwannee River, Georgia: Interaction, Properties and Proposed Structure, US Geology Survey, Open-File Report 85-557, Denver, Colorado (1989).
  15. Majcher, E., Chorover, J., Bollag, J. M. and Huang, P. M., "Evolution of $CO_2$ during birnessite-induced oxidation of $^{14}C$-labled catechol," Soil Sci. Soc. Am. J., 64, 157-163 (2000). https://doi.org/10.2136/sssaj2000.641157x
  16. McKenzie, R. M., "The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese," Miner. Mag., 38, 493-502(1971). https://doi.org/10.1180/minmag.1971.038.296.12
  17. Chang Chein, S. W., Chen, H. L., Wang, M. C. and Seshaiah, K., "Oxidative degradation and associated mineralization of catechol, hydroquinone and resocinol catalyzed by birnessite," Chemosphere, 74, 1125-1133(2009). https://doi.org/10.1016/j.chemosphere.2008.10.007
  18. Lu, J., Huang, Q. and Mao, L., "Removal of acetaminophen using enzyme-mediated oxidative coupling process: 1. Reaction rate and pathways," Environ. Sci. Technol., 43, 7062-7067(2009). https://doi.org/10.1021/es9002422
  19. Huang, G. and Weber, W. J., "Transformation and removal of Bisphenol A from aqueous phase via peroxidase-mediated oxidative coupling reactions: Efficacy, Products, and Pathways," Environ. Sci. Technol., 39, 6029-6036(2005). https://doi.org/10.1021/es050036x
  20. Kang, K. H., Lee, D. H. and Shin, H. S., "Reaction kinetics and transformation products of 1-naphthol by Manganeses oxide-mediated oxidative-coupling reaction," J. Hazad. Mater., 165, 540-547(2009). https://doi.org/10.1016/j.jhazmat.2008.10.027
  21. Park, J. W., Dec, J., Kim, J. E. and Bollag, J. M., "Effect of humic constituents on the transformationof chlorinated phenols and analines in the presence of oxidoreductive enzymes or birnessite," Environ. Sci. Technol., 33, 2028-2034 (1999). https://doi.org/10.1021/es9810787
  22. Ulrich, H. J. and Stone, A. T., "The oxidation of chlorophenols adsorbed to manganese oxide surfaces," Environ. Sci. Technol., 23, 421-428(1989). https://doi.org/10.1021/es00181a006
  23. Zhang, H., "Metal oxide-facilitated oxidation of antibacterial agent," Ph. D. thesis, Georgia Institute of Technol., USA(2004).
  24. Pizzigallo, M. D. R., Ruggiero, P., Crecchio, C. and Mininni, R., "Manganese and iron oxides as reactants for oxidation of chlorophenols," Soil Sci. Soc. Am. J., 59, 440-452(1995).
  25. 임동민, 강기훈, 신현상, "망간산화물을 이용한 1-Naphthol의 산화-제거 연구," 대한환경공학회지, 28(5), 535-542 (2006).