DOI QR코드

DOI QR Code

Life Cycle Assessment on Pump and Treatment Remediation of Contaminated Groundwater

오염 지하수 양수 및 처리 공정에 대한 전과정평가

  • Cho, Jong-Soo (Department of Environmental Engineering, The Catholic University of Korea)
  • 조종수 (가톨릭대학교 생명환경공학부)
  • Received : 2011.01.04
  • Accepted : 2011.06.26
  • Published : 2011.06.30

Abstract

Environmental impact by proposed pump and treatment remediation of groundwater contaminated with TCE over 0.6 mg/L down to 0.005 mg/L was assessed for 30 years operation in an industrial park. Total amount of groundwater treated was $2.96{\times}10^7m^3$ and the amount of TCE removed was 17.6 kg at most. The life cycle assessment was used to estimate the environmental cost and environmental benefit and their effects on the environment could be analyzed. Most of the environmental cost was accrued from electricity generation for 30 years pump operation, which includes energy consumption, resources consumption such as coal, crude oil, emission of global warming gas and acid gas into air, waste water production, and waste generation. Environmental impact could be quantified with a Life Cycle Assessment (LCA) model for soil and groundwater remediation and normalized based upon consumption and emission quantities per capita in the world. Among the normalized values, acidification material release was the most significant.

국내 TCE에 의해 오염된 산업 공단내의 지하수 정화 방법으로 양수 및 처리(pump and treatment) 공법이 제안되었다. TCE 농도 0.6 mg/L 오염 지하수를 30년 동안 이 공법에 의해 처리하여 0.005 mg/L 이하 농도로 방류할 경우 그 과정에서 발생하는 환경 비용과 환경 편익을 전과정평가에 의해 산출하였으며 그에 따른 환경 영향 및 환경 효과를 분석하였다. 방류 지하수의 총량은 $2.96{\times}10^7m^3$이며 제거된 TCE의 총량은 최대 17.6 kg이었다. 환경 비용은 에너지의 소비, 자원의 소비, 대기, 수질 및 고형 폐기물 형태의 오염 물질의 배출량 등으로 산출되었으며 환경 편익은 정화된 지하수의 사용으로 얻어졌다. 환경 비용에 따른 환경 영향은 30년 동안 구동하는 pump에 의한 전력 사용, 발전을 위해 소모되는 석유, 석탄 등의 원자재의 소모, 방출되는 지구 온난화 및 산성 가스, 부영양화, 폐기물의 발생을 포함하며 토양/지하수 정화 공정 전과정평가 모델의 사용으로 정량화하고 전세계 일인당 소모 또는 배출하는 표준량으로 나누어 표준화하여 비교한 결과 산성비 원인 오염물 배출이 가장 심각하였다.

Keywords

References

  1. ScanRail Consultant, "Environmental/Economic Evaluation and Optimising of Contaminated Site Remediation, Method to Involve Environmental Assessment," EU LIFE Project No. 96ENV/DK/0016(2000).
  2. Overmeyer, P., Gaffne, K. and Goldblum, D., "Green Cleanup Standards," National Brownfield Association, the Big Deal Conference-Phoenix Information Session, Phoenix, AZ(2009).
  3. US EPA, "Green Remediation: Incorporating Sustainable Environmental Practices into Remediation of Contaminated Sites," Technology Primer, EPA 542-R-08-002, US EPA, OSWER, Washington, DC(2008).
  4. Goldblum, D., "Carbon Calculus," ASTSWMO Mid-year Conference, Mobile, AL(2008).
  5. USAF, "Sustainable Remediation Tool, User Guide," US Air Force, AFCEE, Tyndall Air Force Base, FL(2009).
  6. Ribbenhed, M., Wolf-Watz, C., Almemark, M., Palm, A. and Sternbeck, J., "Livscykelanlysav marksaneringstekniker for fororenad jord och sediment," 108 Stockholm, IVI Svenska Miljoinstitutet AB(2002).
  7. Suer, P., Nilsson-Paledal, S. and Norrman, J., "LCA for Site Remediation: A Literature Review," Soil and Sediment Contamination, 13(4), 415-425(2004). https://doi.org/10.1080/10588330490471304
  8. Shakweer, A. F. and Nathanail, P. C., "LCA Methodology for Remediation Strategy Slection," ConSol 2003 8th International FZK/TNO Conference on Contaminated Soil, Gent, Belgium, pp. 12-16(2003).
  9. Volkwein, S., Hurtig, H. W. and Klöpffer, W., "Life Cycle Assessment of Contaminated Site Remediation," International J. Life Cycle Assessment, 4, 263-274(1999). https://doi.org/10.1007/BF02979178
  10. Diamond, M. L., Page, C. A., Campbell, M., McKenna, S. and Lall, R., "Life-cycle Framework for Assessment of Site Remediation Options: Method and Generic Survey," Environ. Toxicol. Chem., 18(4), 788-800(1999). https://doi.org/10.1002/etc.5620180427
  11. Owens, J. W., "Life-cycle Assessment in Relation to Risk Assessment: an Evolving Perspective," Risk Anal., 17, 359-365(1997). https://doi.org/10.1111/j.1539-6924.1997.tb00874.x
  12. Vignes, R., "Limited Life cycle Analysis: A Tool for the Environmental Decision-making Toolbox," Strategic Environ. Manage., 1, 297-332(1999).
  13. Drunnen, M. A. van, E. Beinet, M.H. Nijboer, A. Haselhoff, M. in't. Veld, A.R. Schutte, "De RMK-metodiek voor het beoordelen van bodemsaneringvarianten-Een method gebaseerd op Risicoreductie, Milieuverdienste en Kosten," RMK fas 3. Internetversie(2000).
  14. Bender, A., Volkwein, S., Bettermann, G., Hurtig, H. W., Klopffer, W. and Kohler, W., "Life Cycle Assessment Method for Remedial Action Techniques: Methodology and Application," Contaminated Soil '98, 6th International FZK/ TNO Conference, 1, pp. 367-376, Edinburgh, UK(1998).
  15. U.S. EPA, "Guidance on Remedial Actions for Contaminated Ground Water at Superfund Sites," EPA/540/G-99/003, OSWER Directive 9283.1-2, U.S. EPA, Washington, DC (1998).
  16. Zheng, C., Bennett, G. D. and Andrews, C. B., "Reply to discussion of analysis of ground-water remedial alternatives at a Superfund site," Ground Water, 30(3), 440-442(1992).
  17. U.S. EPA, "Evaluation of Ground-Water Extraction Remedies," U.S. EPA, Office of Emergency and Remedial Response, Washington, DC(1992).
  18. NRC, "Alternatives for Ground Water Cleanup," National Research Council, National Academy Press, Washington, DC (1994).
  19. Grubb, S., "Analytical Model for Estimation of Steady- State Capture Zones of Pumping Wells in Confined and Unconfined Aquifers," Ground Water, 31(1), 27-32(1993). https://doi.org/10.1111/j.1745-6584.1993.tb00824.x
  20. 국가 LCI 종합정보망, 2010, http://www.kncpc.re.kr/lci/lcidb/ db_data_layout.asp?cate_id=1&field_value=&Act_id=1&db_flag=M.
  21. Frees, N. and Pedersen, M. A., "Udvikling af miljovenlige industriprodukter (UMIP), Enhedsproces database," Instituttet for Produktudvikling, Danmarks Tekniske Universitet(1996).

Cited by

  1. Emissions and Energy Consumption vol.52, pp.1, 2014, https://doi.org/10.9713/kcer.2014.52.1.119