DOI QR코드

DOI QR Code

Effects of Dissolved Compounds in Groundwater on TCE Degradations Reaction by Nanoscale Zero-Valent Iron

나노영가철의 TCE 분해반응 시 지하수 용존물질의 영향

  • Kim, Tae-Ho (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Kim, Hong-Seok (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Lee, Jin-Yong (Department of Geology, Kangwon National University) ;
  • Cheon, Jeong-Yong (GeoGreen 21 Co., Ltd.) ;
  • Lee, Kang-Kun (School of Earth and Environmental Sciences, Seoul National University) ;
  • Hwang, In-Seong (Department of Civil and Environmental Engineering, Pusan National University)
  • 김태호 (부산대학교 사회환경시스템공학과) ;
  • 김홍석 (부산대학교 사회환경시스템공학과) ;
  • 이진용 (강원대학교 지질학과) ;
  • 천정용 (지오그린21) ;
  • 이강근 (서울대학교 지구환경과학부) ;
  • 황인성 (부산대학교 사회환경시스템공학과)
  • Received : 2011.02.25
  • Accepted : 2011.06.26
  • Published : 2011.06.30

Abstract

Nanoscale zero-valent iron (NZVI) particles were tested as remediation media for groundwater contaminated by organic pollutants (e.g., TCE, trichloroethylene). The contaminated groundwater contained anions ($NO_3^-$, $Cl^-$, $SO_4^{2-}$, and $HCO_3^-$) and natural organic matter (NOM). Treatability of commercial NZVI particles (NANOFER 25, Nanoiron, Czech) was tested by using a synthetic groundwater and the field groundwater samples. More than 95% of 1.8 mM TCE was removed within 20 hours with a NZVI dosage of 25 g/L ($k=0.15hr^{-1}$). Repetitive degradation experiments revealed that the removal capacity of NANOFER 25 was 0.19 mmole TCE/g NZVI. TCE degradation reactions were not substantially affected by the presence of each anion with concentrations as high as 100 times the average field concentrations. However, when the four anions ($NO_3^-$, $Cl^-$, $SO_4^{2-}$, $HCO_3^-$) were present simultaneously. the degradation reactivity and removal capacity were decreased by 60% ($k=0.069hr^{-1}$) and 10%, respectively. The k value of TCE degradation in the presence of NZVI (25 g/L) with dissovled organic carbon of 2.5 mg/L was also decreased by 84% ($k=0.025hr^{-1}$). In the experiments with the field groundwater, more than 90% of $1.8{\mu}M$ TCE, which is the concentration of TCE at the source zone, was removed within 10 hours with a NANOFER 25 dosage of 25 g/L. The results imply that the contaminated groundwater can effectively be treated by NANOFER 25 with more information on the hydrogeology of the site.

본 연구에서는 TCE 등의 유기오염물질로 오염된 현장의 지하수를 처리하기 위한 반응매질로써 나노영가철(nanoscale zero valent iron, NZVI)의 적용성을 평가하기 위해 수행되었다. 오염현장에서는 TCE 외에 음이온($NO_3^-$, $Cl^-$, $SO_4^{2-}$, $HCO_3^-$)과 자연유기물질(natural organic matter, NOM)이 검출되었으며 상업용 나노영가철(NANOFER 25, Nanorion)을 이용하여 모의, 현장 지하수를 처리하고 그 결과를 분석하였다. TCE만을 고려한 처리실험에서 25 g/L의 NANOFER 25는 1.8 mM TCE를 약 20시간에 95% 이상 처리하였으며($k=0.15hr^{-1}$), TCE 반복주입을 통해 평가한 NANOFER 25의 반응용량은 0.19 mmole TCE/g NZVI인 것으로 나타났다. 음이온은 개별 음이온의 농도는 반응성에 큰 영향을 주지 않았으나 4가지 음이온을 모두 포함하는 오염현장의 평균농도로 제조한 모의지하수처리 시 유사 1차속도상수(k)가 $0.069hr^{-1}$로 60% 감소하였으며 총 반응용량은 10% 감소하였다. 용존성 유기물(DOC)를 기준으로 한 유기물의 현장 평균농도에서는 반응속도상수가 $0.025hr^{-1}$로 84%까지 감소하는 것도 확인할 수 있었다. 오염현장에서 최고의 TCE 농도($1.8{\mu}M$)를 가지는 현장지하수를 이용하여 처리하였을 때는 TCE 농도가 낮아 25 g/L의 NANOFER 25를 사용하여 10시간 내 90% 이상의 TCE를 분해할 수 있었다. 본 연구결과와 현장 오염지하수에 대한 수리, 지질학적 조사결과를 접목할 경우, 향후 효율적인 현장 지하수처리 결과를 도출할 수 있을 것으로 예상된다.

Keywords

References

  1. 2005 전국 지정폐기물의 발생 및 처리현황, 환경부(2005).
  2. 2007 전국 지하수 수질측정망 운영결과, 환경부(2008).
  3. 지하수 DNAPL 오염원 정화기술 기술동향 분석보고서, SEEDS 지하수연구단한국환경산업기술원(2010).
  4. Johnson, T. L., Scherer, M. M. and Tratnyek, P. G., "Kinetics of Halogenated organic compound degradation by iron metal," Environ. Sci. Technol., 30, 2634-2640(1996). https://doi.org/10.1021/es9600901
  5. Arnold, W. A. and Rovert A. L., "Pathway and kinetics of chlorinated ethylene and chlorinated acethylene reaction with Fe(0) particles," Environ. Sci. Technol., 32, 3017-3025 (2000).
  6. 김영훈, "팔라듐으로 코팅된 영가철을 이용한 염화페놀류의 환원적 분해," 한국폐기물학회지, 19(5), 623-629(2002).
  7. 고석오, 송호철, 김영훈, "용존가스 종류 및 화학적 조건별 영가철(Fe0)에 의한 6가크롬의 반응성 평가," 대한환경공학회지, 25(5B), 407-412(2005).
  8. 유경열, 옥영식, 양재의, "영가철(Zerovalent Iron)을 이용한 수용액 중 비소(v)의 불용화," 한국환경농학회지, 26(3), 197-203(2007).
  9. Alowitz, M. J. and Scherer, M. M., "Kinetics of nitrate, nitrate, and Cr(VI) reduction by iron metal," Environ. Sci. Technol., 36, 299-306(2002). https://doi.org/10.1021/es011000h
  10. Blowes, D. W., Ptacek. C. J., Benner, S. G. and McRae, C. W. T., "Treatment of inorganic contaminants using permeable reactive barriers," Contam. Hydrol., 45(1-2), 123-137 (2000). https://doi.org/10.1016/S0169-7722(00)00122-4
  11. Keum, Y. S. and Li, Q. X., "Reductive debromination of polybrominated diphenyl ethers by zerovalent iron," Environ. Sci. Technol., 39, 2280-2286(2005). https://doi.org/10.1021/es048846g
  12. Liu, Y., Majetich, S. A., Tilton, R. D., Sholl, D. S. and Lowry, G. V., "TCE dechlorination rate, pathway, and efficiency of nanoscale iron particles with different properties," Environ. Sci. Technol., 39, 1338-1345(2005). https://doi.org/10.1021/es049195r
  13. Liu, Y. and Lowry, G. V., "Effect of particle age (Fe0 content) and Solution pH on NZVI reductivity : $H_2$ evolution and TCE dechlorination," Environ. Sci. Technol., 40, 6085-6090(2006). https://doi.org/10.1021/es060685o
  14. Sun, Y., Li, X., Cao, J., Zhang, W. and Wang, H., "Characterization of zero-valent iron nanoparticles," Adv. Colloid Interface Sci., 120, 47-56(2006). https://doi.org/10.1016/j.cis.2006.03.001
  15. Liu, Y., Phenrat, T. and Lowry, G. V., "Effect of TCE concentration and dissolved groundwater solutes on NZVIpromoted TCE dechlorination and $H_2$ evolution," Environ. Sci. Technol., 41, 7881-7887(2007). https://doi.org/10.1021/es0711967
  16. Su, C. and Puls, R. W., "Nitrate reduction by zero Zerovalent Iron: Effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate," Environ. Sci. Technol., 38, 2715-2720(2004). https://doi.org/10.1021/es034650p
  17. Agrawal, A., Ferguson, W. J., Gardner, B. O., Christ, J. A., Bandstra, J. Z. and Tratnyet, P. G., "Effects of carbonate species on the kinetics of sechlorination of 1,1,1-trichloroethane by zero-valent iron," Environ. Sci. Technol., 36, 4326-4333(2002). https://doi.org/10.1021/es025562s
  18. Devlin, J. F. and Allin, K. O., "Major anion effects on the kinetics and reactivity of granular iron in glass-encased magnet batch reactor experiments," Environ. Sci. Technol., 39, 1868-1874(2005). https://doi.org/10.1021/es040413q
  19. Johnson, T. L., Fish, W., Gorby, Y. A. and Tratnyek, P. G. "Degradation of carbon tetrachloride by iron metal : Complexation effects on the oxide surface," J. Contam. Hydrol., 29, 379-398(1998). https://doi.org/10.1016/S0169-7722(97)00063-6
  20. 조현희, 박재우, "Zero-valent Iron (ZVI)에 의한 TCE의 탈염소화 반응에 계면활성제와 자연용존 유기물이 미치는 영향에 관한 연구," 대한환경공학회지, 24(4), 689-696(2002).
  21. Johnson, R. L., Johnson, G. O., Nurmi, J. T. and Trantyek, P. G., "Natural organic matter enhanced mobility of nano zerovalent iron," Environ. Sci. Technol., 43, 5455-5460(2009). https://doi.org/10.1021/es900474f
  22. Hydutsky, B. W., Mack, E. J., Beckerman, B. B., Skluzacek, J. M. and Mallouk, T. E., "Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures," Environ. Sci. Technol., 41, 6418-6424 (2007). https://doi.org/10.1021/es0704075
  23. 안준영, 김홍석, 황인성, "공기접촉 제어를 통한 산화방지 Core-Shell 나노영가철의 제조," 한국지하수토양환경학회지, 13(6), 93-102(2008).
  24. Kim, H. S., Ahn, J. Y., Hwang, K. Y., Kim, I. K. and Hwang, I., "Atmospherically stable nanoscale zero-valent iron particles formed under controlled air contact : characteristics and reactivity," Environ. Sci. Technol., 44, 1760-1766(2010). https://doi.org/10.1021/es902772r
  25. James, F., Mark, K., Nicos, M. and Tie, L., "Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene," Environ. Sci. Technol., 34, 514-521(2000). https://doi.org/10.1021/es990716y