DOI QR코드

DOI QR Code

Effect of Temperature, Light Intensity and pH on the Growth Rate of Chlorella Vulgaris

온도, 광세기 및 pH에 따른 Chlorella Vulgaris 증식률

  • Choi, Hee-Jeong (Department of Environmental Engineering, Kwandong University) ;
  • Lee, Seung-Mok (Department of Environmental Engineering, Kwandong University)
  • Received : 2011.07.07
  • Accepted : 2011.07.26
  • Published : 2011.07.29

Abstract

The aim of this study was to investigate the efficiency of temperature, light intensity and pH on the growth rate of Chlorella vulgaris (C. vulgaris). The size of C. vulgaris (FC-16) was $3-8{\mu}m$, having round in shape. The cells of C. vulgaris (FC-16) was cultured in the Jaworski's Medium with deionized water. To evaluate the efficiency of temperature, light intensity and pH on the growth rate of C. vulgaris, six different fractions of temperature ($10^{\circ}C$, $15^{\circ}C$, $20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$, $35^{\circ}C$), various light intensities ($100-800{\mu}Em^{-2}s^{-1}$) and seven different fractions of pH (3, 4, 5, 6, 7, 7.5, 9) were prepared. The growth rate of C. vulgaris cultivation was approximately 5.2 to 5.5 times faster, the concentration of Chlorophyll a was also 5 to 5.5 times higher, and cell volume per unit area was 14% higher at $25^{\circ}C$ to $30^{\circ}C$ than those at $10^{\circ}C$. Therefore, the optimal temperature for cultivation of C. vulgaris was estimated $25^{\circ}C$ to $30^{\circ}C$. The growth rate of C. vulgaris increased slowly up to 5 days, exploded after 5 days until 15 days, and then stoped after that. The optimum cultivation period of C. vulgaris was estimated as 15 days. The optimum pH for the growth rate of C. vulgaris was determined pH 7 to 7.5.

본 연구는 온도, 광세기 및 pH가 Chlorella vulgaris (C. vulgaris)의 증식률에 미치는 영향을 알아보고자 하였다. 각 조건에서의 효율을 평가하기 위하여 C. vulgaris (FC-16) ($3{\sim}8{\mu}m$)를 Jaworski's Medium에 증식시킨 뒤, 다양한 온도($10^{\circ}C$, $15^{\circ}C$, $20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$, $35^{\circ}C$)와 다양한 광세기($100{\sim}800{\mu}Em^{-2}s^{-1}$) 및 다양한 pH (3, 4, 5, 6, 7, 7.5, 9) 조건에서 실험하였다. 실험결과, $25{\sim}30^{\circ}C$ 조건에서는 $10^{\circ}C$ 조건과 비교 시 같은 양의 C. vulgaris를 증식하는데 걸리는 시간은 약 5.2~5.5배 빨랐고, Chlorophyll a는 5~5.5배 높았으며, 단위 면적당 cell volume은 14% 이상 높아 C. vulgaris 최적 배양온도는 $25{\sim}30^{\circ}C$로 조사되었다. C. vulgaris 배양기간의 경우, 증식속도가 5일까지는 느리게 증가했지만, 6일 이후부터 15일까지는 폭발적으로 증가했고, 15일 이후에는 거의 증식이 멈춰 15일 이내가 적당한 것을 알 수 있었다. C. vulgaris 증식을 위한 최적 pH는 pH 7~7.5로 조사되었다.

Keywords

References

  1. Alain, D., Jean, D., Françoise, P. and Lhoussaine, B., "Growth rate four freshwater algae in relation to light and temperature," Hydrobiol., 207, 221-226(2000).
  2. Chisti, Y., "Biodiesel from microalgae," Biotechnol. Adv., 25, 294-306(2007). https://doi.org/10.1016/j.biotechadv.2007.02.001
  3. Haag, A. L., "Algae bloom again," Nature, 447, 520-521 (2007). https://doi.org/10.1038/447520a
  4. Van Gerpen, J., "Biodiesel processing and production," Fuel Proc. Technol., 86, 1097-1107(2005). https://doi.org/10.1016/j.fuproc.2004.11.005
  5. Kalin, M., Wheeler, W. N. and Meinrath, G., "The removal of uranium from mining waste water using algal/microbial biomass," J. Environ. Radioact., 78, 151-177(2005).
  6. Munoz, R. and Guieysse B., "Algal-bacterial processes for the treatment of hazardous contaminants: a review," Water Res., 40, 2799-2815(2006). https://doi.org/10.1016/j.watres.2006.06.011
  7. An, J. K., Sim, S. J., Lee, J. S. and Kim, B. K., "Hydrocarbon production from secondarily treat piggery wastewater by the green algae Botryococcus braunii," J. Appl. Phycol., 15(2-3), 185-191(2003). https://doi.org/10.1023/A:1023855710410
  8. Kim, J., Lingaraju, B. P., Rheaume, R., Lee, J. Y. and Siddiqui, K. F., "Removal of ammonium from wastewater effluent by Chlorella vulgaris," Tsinghua Sci. Technol., 15(4), 391-396(2010). https://doi.org/10.1016/S1007-0214(10)70078-X
  9. Kang, C. D., An, J. Y., Park, T. H. and Sim, S. J., "Astaxanthin biosynthesis from simultaneous N and P uptake by the green alga Haematococcus pluvialis in primarytreated wastewater," Biochem. Eng., 31(3), 234-238(2006). https://doi.org/10.1016/j.bej.2006.08.002
  10. Olguin, E. J., Galicia, S., Mercado, G. and Perez, T., "Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions," J. Appl. Phyco., 15(2-3), 249-257(2003). https://doi.org/10.1023/A:1023856702544
  11. Moreno-Garrido, I., "Microalgae immobilization: current techniques and uses," Bioresource Technol., 99, 3949-3964 (2008). https://doi.org/10.1016/j.biortech.2007.05.040
  12. Hu, G., Kurano, N., Kawachi, M., Iwasaki, I. and Miyachi, S., "Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor," Appl. Microbiol. Biotechnol., 49, 655-662(1998). https://doi.org/10.1007/s002530051228
  13. Watanabe, K., Imase, M., Sasaki, K., Ohmura, N., Saiki, H. and Tanaka, H., "Composition of the sheath produced by the green alga Chlorella sorokiniana," Lett. Appl. Microbiol., 42(5), 538-543(2006). https://doi.org/10.1111/j.1472-765X.2006.01886.x
  14. Sakai, N., Sakamoto, Y., Kishimoto, N., Chihara, M. and Karube, I., "Chlorella strains from hot springs tolerant to high temperature and high $CO_{2}$," Energy Conv. Manag., 36, 693-696(1995). https://doi.org/10.1016/0196-8904(95)00100-R
  15. Papazi, A., Markridis, P., Divanach, P. and Kotzabasis, K., "Bioenergetic changes in the microalgal photosynthetic apparatus by extremely high $CO_{2}$ concentrations induce an intense biomass production," Physiol. Plant., 132, 338-349 (2008). https://doi.org/10.1111/j.1399-3054.2007.01015.x
  16. De-Bashan, L. E., Moreno, M., Hernandez, J. P. and Bashan, Y., "Removal of ammonium and phosphorus ions from synthetic wastewater by microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growthpromoting bacterium Azospirillum brasilense," Water Res., 36, 2941-2948(2002). https://doi.org/10.1016/S0043-1354(01)00522-X
  17. Grobbelaar, J. U., "Physiological and technological considerations for optimizing mass algal cultures," J. Appl. Phyco., 12, 201-206(2000). https://doi.org/10.1023/A:1008155125844
  18. Munoz, R., Rolvering, C., Guieysse, B. and Mattiasson, B., "Photosynthetically oxygenated acetonitrile biodegradation by an algal-bacterial microcosm: a pilot scale study," Water Sci. Technol., 51(12), 261-265(2005b).
  19. Ogbonna, J. C. and Tanaka, H., "Light requirement and photosynthetic cell cultivation-development of processes for efficient light utilization in photobioreactors," J. Appl. Phycol., 12, 207-218(2000b). https://doi.org/10.1023/A:1008194627239
  20. Lee, K. and Lee, C. G., "Effect of light/dark cycles on wastewater treatments by microalgae," Biotechnol. Bioprocess Eng., 6, 194-199(2001). https://doi.org/10.1007/BF02932550
  21. Valderrama, L. T., Del Campo, C. M., Rodriguez, C. M., de-Bashan, L. E. and Bashan, Y., "Treatment of recalcitrant wastewater from ethanol and citric and production using the microalga Chlorella vulgaris and the macrophyte Lemna minuscula," Water Res., 36, 4185-4162(2002). https://doi.org/10.1016/S0043-1354(02)00143-4
  22. Briggs, G. E., "Blackman, Frederick Frost," @. New York: Charles Scribner's Sons. 183-185.
  23. Wu, Z. and Shi, X., "Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model," Lett. Appl. Microbiol., 44(1), 13-18(2007). https://doi.org/10.1111/j.1472-765X.2006.02038.x
  24. Lee, Y. K., "Micoalgal mass culture systems and methods: their limitation and potential," J. Appl. Phycol., 13, 307-315(2001). https://doi.org/10.1023/A:1017560006941
  25. Azov, Y. and Goldman, J. C., "Free ammonia inhabitation of algal photosynthesis in intensive cultures," Appl. Environ. Microbiol., 43, 735-739(1982).
  26. Tadesse, I., Green, F. B. and Puhakka, J. A., "Seasonal and diurnal variations of temperatures, pH and dissolved oxygen in advanced integrated wastewater pond system treating tannery effluent," Water Res., 38, 645-654(2004). https://doi.org/10.1016/j.watres.2003.10.006
  27. Mayo, A. W. and Noike, T., "Effects of temperature and pH on the growth of heterotrophic bacteria in waste stabilization pond," Water Res., 30(2), 447-455(1996). https://doi.org/10.1016/0043-1354(95)00150-6

Cited by

  1. Auto/bio-flocculation conditions to separate algal particles without chemical coagulants for flotation and sedimentation processes pp.1520-5754, 2019, https://doi.org/10.1080/01496395.2019.1579842