DOI QR코드

DOI QR Code

A Study of the Improvement in an Anaerobic Digester for Sludge Reduction

슬러지 저감을 위한 혐기성 소화조 개선에 관한 연구

  • Kim, Hong-Seok (Department of Energy and Environmental engineering, Seoul National University of Science and Technology) ;
  • Lee, Tae-Jin (Department of Energy and Environmental engineering, Seoul National University of Science and Technology)
  • 김홍석 (서울과학기술대학교 에너지환경대학원 에너지환경공학과) ;
  • 이태진 (서울과학기술대학교 에너지환경대학원 에너지환경공학과)
  • Received : 2011.07.19
  • Accepted : 2011.07.26
  • Published : 2011.07.29

Abstract

The largest problem of domestic anaerobic digestion is low digestion efficiency. Reasons of the problem would be low organic matters input, low mixing efficiency in digestion tank, refractory excess sludge etc.. In this study, screw attached disk-type concentration system and a mechanical mixing system, solubilization facility improvements were performed to solve problems. Through these improvements, the sludge conc. of the concentrator increased 2.6-fold and the volume reduction efficiency was increased 3.0-fold. In addition, the dead-space is reduced by mechanical agitation. Anaerobic digester gas production in the digestion tank is increased from $193.8m^3$ to $386.0m^3$ per day. Digestion efficiency is improved to 54.6% from 47.6%. Digestion gas production is increased from $0.30Nm^3/kg$ VS to $0.42Nm^3/kg$ VS.

국내에서 운영중인 혐기성 소화조의 가장 큰 문제점은 낮은 소화효율이며, 이에 대한 원인은 낮은 유기물 투입농도, 소화조내의 낮은 교반 효율, 잉여슬러지의 난분해성 등이다. 본 연구에서는 혐기성 소화설비의 효율성을 높이기 위하여 기존의 혐기성 소화 시스템에 농축 및 교반, 오존 가용화 설비를 설치하고, 기존의 2단 소화조에서 단단소화조로 개선함으로서 소화효율 및 바이오가스의 발생량을 증대 시키고자 하였다. 이러한 개선을 통하여 농축시스템의 슬러지 농도는 2.6배 향상되었음을 확인하였으며, 농축효율은 3.0배 증가한 것으로 나타났다. 또한, 기계식 교반으로 사공간이 줄어들었음을 확인하였으며, 혐기성 소화조 내 소화가스 발생량도 평균 $193.8m^3$/일에서 평균 $386.0m^3$/일로 향상된 것을 확인하였다. 소화효율은 평균 47.6%에서 54.6%로 향상되어진 것으로 나타났으며, VS제거당 소화가스 발생량은 평균 $0.30Nm^3/kg$ VS removal에서 $0.42Nm^3/kg$ VS removal로 증대되어진 것으로 나타났다.

Keywords

References

  1. 이영우, "고율 이단 혐기성 소화조를 이용한 음폐수 처리 특성," 한밭대학교 산업대학원 석사 학위 논문(2010).
  2. 한국환경공단, "소화조 운영실태 정밀진단 결과보고," (2005).
  3. Owen, W. P., Stuckey, D. C., Healy, J. B., Young, L. Y. and McCarty, P. L., "Bioassay for monitoring biochemical methane potential and anaerobic toxicity," Water Res., 13, 485-492(1979). https://doi.org/10.1016/0043-1354(79)90043-5
  4. Malina, J. F. and Pohland, F. G., "Design of Anaerobic Processes for the Treatment of Industrial and Municipal Wastes," Technomic Publishing, pp. 173-182(1992).
  5. Shelton, D. R. and Tiedje, J. M., "General Method for determining anaerobis biodegradation potential," Appl. Environ. Microbid, 47, 850-857(1984).
  6. Christophersen, T. H., Kjeldsen, P. and Lindhardt, B., "Gasgenerating Process in landfills," E & FN SPON, London, pp. 24-49(1996).
  7. Gujer, W. and Zehnder, A. J. B., "Conversion process in anaerobic digestion," Water Sci. Technol., 15, 127-167(1983).
  8. Eastman, J. A. and Ferguson, J. F., "Solubilization of anaerobic particulate organic carbon during the acid phase of anaerobic digestion," J. WPCF, 53, 352-366(1981).
  9. Lawrence, A. W,. "Application of process kinetics to design of anaerobic processes," American Chemical Society, Cleveland, Ohio(1971).
  10. Bradley, D. E. and Angus, J. P., "Benthic metabolism and nitrogen cycling in a subtropical east Australian estuary (Brunswick): Temporal variability and controlling factor," Limnol. Oceanogr., 50(1), 81-96(2005). https://doi.org/10.4319/lo.2005.50.1.0081
  11. Angelidaki, I. and Ahring, B. K., "Anaerobic digestion of manure at different ammonia loads : effect of temporature," Water Res., 28, 727-731(1994). https://doi.org/10.1016/0043-1354(94)90153-8
  12. Bartlett, K. B. and Harriss, R. C., "Review and assessment of methane emissions from wetlands," Chemosphere(1993).

Cited by

  1. The Improvement of Bio-gas Production through the Change of Sludge-Recycle Ratio with Two-Stage Anaerobic Digestion vol.23, pp.6, 2014, https://doi.org/10.5322/JESI.2014.23.6.1061