DOI QR코드

DOI QR Code

Transesterification Using the Cross-Linked Enzyme Aggregate of Photobacterium lipolyticum Lipase M37

  • Han, Jin-Yee (Division of Biotechnology, The Catholic University of Korea) ;
  • Kim, Hyung-Kwoun (Division of Biotechnology, The Catholic University of Korea)
  • Received : 2011.06.28
  • Accepted : 2011.07.26
  • Published : 2011.11.28

Abstract

Biodiesel is methyl and ethyl esters of long-chain fatty acids produced from vegetable oils or animal fats. Lipase enzymes have occasionally been used for the production of this biofuel. Recently, biodiesel production using immobilized lipase has received increased attention. Through enhanced stability and reusability, immobilized lipase can contribute to the reduction of the costs inherent to biodiesel production. In this study, methanol-tolerant lipase M37 from Photobacterium lipolyticum was immobilized using the cross-linked enzyme aggregate (CLEA) method. Lipase M37 has a high lysine content (9.7%) in its protein sequence. Most lysine residues are located evenly over the surface of the protein, except for the lid structure region, which makes the CLEA preparation yield quite high (~93%). CLEA M37 evidences an optimal temperature of $30^{\circ}C$, and an optimal pH of 9-10. It was stable up to $50^{\circ}C$ and in a pH range of 4.0-11.0. Both soluble M37 and CLEA M37 were stable in the presence of high concentrations of methanol, ethanol, 1-propanol, and n-butanol. That is, their activities were maintained at solvent concentrations above 10% (v/v). CLEA M37 could produce biodiesel from olive oil and alcohols such as methanol and ethanol. Additionally, CLEA M37 generated biodiesel via both 2-step methanol feeding procedures. Considering its physical stability and reusability, CLEA M37 may potentially be used as a catalyst in organic synthesis, including the biodiesel production reaction.

Keywords

References

  1. Chena, J.-W. and W.-T. Wu. 2003. Regeneration of immobilized Candida antarctica lipase for transesterification. J. Biosci. Bioeng. 95: 466-469.
  2. Cunha, A. G., G. Fernández-Lorente, J. V. Bevilaqua, J. Destain, L. M. Paiva, D. M. Freire, et al. 2008. Immobilization of Yarrowia lipolytica lipase - a comparison of stability of physical adsorption and covalent attachment techniques. Appl. Biochem. Biotechnol. 146: 49-56. https://doi.org/10.1007/s12010-007-8073-3
  3. Jaeger, K. E., B. W. Dijkstra, and M. T. Reetz. 1999. Bacterial biocatalysts: Molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53: 315-351. https://doi.org/10.1146/annurev.micro.53.1.315
  4. Jaeger, K. E. and T. Eggert. 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13: 390-397. https://doi.org/10.1016/S0958-1669(02)00341-5
  5. Jung, S.-K., D. G. Jeong, M. S. Lee, J.-K. Lee, H.-K. Kim, S. E. Ryu, et al. 2008. Structural basis for the cold adaptation of psychrophilic M37 lipase from Photobacterium lipolyticum. Proteins 71: 476-484. https://doi.org/10.1002/prot.21884
  6. Kaul, P., A. Stolz, and U. C. Banerjee. 2007. Cross-linked amorphous nitrilase aggregates for enantioselective nitrile hydrolysis. Adv. Synth. Catal. 349: 2167-2176. https://doi.org/10.1002/adsc.200700125
  7. Kim, H. K., H. J. Choi, M. H. Kim, C. B. Sohn, and T. K. Oh. 2002. Expression and characterization of $Ca^{2+}$-independent lipase from Bacillus pumilus B26. Biochim. Biophys. Acta 1583: 205-212. https://doi.org/10.1016/S1388-1981(02)00214-7
  8. Lee, J. H., C. H. Kwon, J. W. Kang, C. Park, B. Tae, and S. W. Kim. 2009. Biodiesel production from various oils under supercritical fluid conditions by Candida antartica lipase B using a stepwise reaction method. Appl. Biochem. Biotechnol. 156: 454-464.
  9. Nadir, D., K. Bulent, and T. Aziz. 2009. Biodiesel production from canola oil by using lipase immobilized onto hydrophobic microporous styrene-divinylbenzene copolymer. Biochem. Eng. J. 44: 220-225. https://doi.org/10.1016/j.bej.2008.12.008
  10. Park, H. J., K. N. Uhm, and H. K. Kim. 2010. Biotransformation of amides to acids using a co-cross-linked enzyme aggregate of Rhodococcus erythropolis amidase. J. Microbiol. Biotechnol. 20: 325-331.
  11. Raita, M., V. Champreda, and N. Laosiripojana. 2010. Biocatalytic ethanolysis of palm oil for biodiesel production using microcrystalline lipase in tert-butanol system. Process Biochem. 45: 829-834. https://doi.org/10.1016/j.procbio.2010.02.002
  12. Ranganathan, S. V., S. N. Narasimhan, and K. Muthukumar. 2008. An overview of enzymatic production of biodiesel. Bioresour. Technol. 99: 3975-3981. https://doi.org/10.1016/j.biortech.2007.04.060
  13. Reetz, M. T. 2002. Lipases as practical biocatalysts. Curr. Opin. Chem. Biol. 6: 145-150. https://doi.org/10.1016/S1367-5931(02)00297-1
  14. Royon, D., M. Daz, G. Ellenrieder, and S. Locatelli. 2007. Enzymatic production of biodiesel from cotton seed oil using tbutanol as a solvent. Bioresour. Technol. 98: 648-653. https://doi.org/10.1016/j.biortech.2006.02.021
  15. Ryu, H. S., H. K. Kim, W. C. Choi, M. H. Kim, S. Y. Park, N. S. Han, et al. 2006. New cold-adapted lipase from Photobacterium lipolyticum sp. nov. that is closely related to filamentous fungal lipases. Appl. Microbiol. Biotechnol. 70: 321-326. https://doi.org/10.1007/s00253-005-0058-y
  16. Sangeetha, K. and T. Emilia Abraham. 2008. Preparation and characterization of cross-linked enzyme aggregates (CLEA) of subtilisin for controlled release applications. Int. J. Biol. Macromol. 43: 314-319. https://doi.org/10.1016/j.ijbiomac.2008.07.001
  17. Schoevaart, R., M. W. Wolbers, M. Golubovic, M. Ottens, A. P. G. Kieboom, F. van Rantwijk, et al. 2004. Preparation, optimization, and structures of cross-linked enzyme aggregates (CLEAs). Biotechnol. Bioeng. 87: 754-762. https://doi.org/10.1002/bit.20184
  18. Sheldon, R. A. 2007. Cross-linked enzyme aggregates (CLEAs): Stable and recyclable biocatalysts. Biochem. Soc. Trans. 35: 1583-1587. https://doi.org/10.1042/BST0351583
  19. Tan, T., J. Lu, K. Nie, L. Deng, and F. Wang. 2010. Biodiesel production with immobilized lipase: A review. Biotechnol. Adv. 28: 628-634. https://doi.org/10.1016/j.biotechadv.2010.05.012
  20. Wang, Y.-D., X.-Y. Shen, Z.-L. Li, X. Li, F. Wang, and X.-A. Nie. 2010. Immobilized recombinant Rhizopus oryzae lipase for the production of biodiesel in solvent free system. J. Mol. Catal. B Enz. 67: 45-51. https://doi.org/10.1016/j.molcatb.2010.07.004
  21. Yang, K. S., J.-H. Sohn, and H. K. Kim. 2009. Catalytic properties of a lipase from Photobacterium lipolyticum for biodiesel production containing a high methanol concentration. J. Biosci. Bioeng. 107: 599-604. https://doi.org/10.1016/j.jbiosc.2009.01.009

Cited by

  1. Molecular Cloning and Heterologous Expression of a True Lipase in Pichia pastoris Isolated via a Metagenomic Approach vol.22, pp.5, 2011, https://doi.org/10.1159/000343819
  2. Highly active biocatalyst for transesterification: Cross linked enzyme aggregates of Thermomyces lanuginosus and Candida antarctica B vol.115, pp.10, 2011, https://doi.org/10.1002/ejlt.201300015
  3. Magnetic Cross-Linked Enzyme Aggregates (mCLEAs) of Candida antarctica Lipase: An Efficient and Stable Biocatalyst for Biodiesel Synthesis vol.9, pp.12, 2011, https://doi.org/10.1371/journal.pone.0115202
  4. Performance in synthetic applications of a yeast surface display-based biocatalyst vol.5, pp.39, 2011, https://doi.org/10.1039/c5ra04039f
  5. Biodiesel production using immobilized lipase: feasibility and challenges vol.10, pp.6, 2011, https://doi.org/10.1002/bbb.1719
  6. Business highlights vol.10, pp.6, 2016, https://doi.org/10.1002/bbb.1730
  7. The biology and the importance of Photobacterium species vol.101, pp.11, 2017, https://doi.org/10.1007/s00253-017-8300-y
  8. Cadaverine Production by Using Cross-Linked Enzyme Aggregate of Escherichia coli Lysine Decarboxylase vol.27, pp.2, 2011, https://doi.org/10.4014/jmb.1608.08033
  9. Interfacial activation of M37 lipase: A multi-scale simulation study vol.1859, pp.3, 2017, https://doi.org/10.1016/j.bbamem.2016.12.012
  10. Enzymatic Biodiesel Production from Manilkara Zapota (L.) Seed Oil vol.9, pp.5, 2011, https://doi.org/10.1007/s12649-017-9854-8
  11. Preparation of Stable Cross-Linked Enzyme Aggregates (CLEAs) of a Ureibacillus thermosphaericus Esterase for Application in Malathion Removal from Wastewater vol.8, pp.4, 2018, https://doi.org/10.3390/catal8040154
  12. Optimization of Transesterification Reactions with CLEA-Immobilized Feruloyl Esterases from Thermothelomyces thermophila and Talaromyces wortmannii vol.23, pp.9, 2018, https://doi.org/10.3390/molecules23092403
  13. Characterization of Organic Solvent-Tolerant Lipolytic Enzyme from Marinobacter lipolyticus Isolated from the Antarctic Ocean vol.187, pp.3, 2011, https://doi.org/10.1007/s12010-018-2865-5
  14. Enzymatic Reetherification in the Production of Butterfat Substitutes vol.49, pp.2, 2019, https://doi.org/10.21603/2074-9414-2019-2-270-280
  15. Genomic and phenomic analysis of a marine bacterium, Photobacterium marinum J15 vol.233, pp.None, 2020, https://doi.org/10.1016/j.micres.2020.126410
  16. Crosslinked Enzyme Aggregates (CLEAs) of Laccases from Pleurotus citrinopileatus Induced in Olive Oil Mill Wastewater (OOMW) vol.25, pp.9, 2011, https://doi.org/10.3390/molecules25092221
  17. A Review on Bio-Based Catalysts (Immobilized Enzymes) Used for Biodiesel Production vol.13, pp.11, 2011, https://doi.org/10.3390/en13113013
  18. Progress in Enzymatic Biodiesel Production and Commercialization vol.9, pp.2, 2021, https://doi.org/10.3390/pr9020355