DNA Binding Specificity of Proteus mirabilis Transcription Regulator

Proteus mirabilis 전사 조절 단백질의 DNA 결합 특성

  • Received : 2011.04.08
  • Accepted : 2011.05.26
  • Published : 2011.06.30

Abstract

Amino acid sequence alignment shows that $\underline{P}$roteus $\underline{m}$irabilis $\underline{t}$ranscription $\underline{r}$egulator (PMTR) has cystein sequence homology at metal binding domain to CueR (copper resistance) protein, which conserves two cysteins (Cys 112 and Cys 120 in PMTR). Gel shift assay revealed that PMTR protein bound to promoter region of Escherichia coli copA (copper-translocating P-type ATPase) and Proteus mirabilis atpase (putative copper-translocating P-type ATPase) genes except that of E. coli zntA (zinc-translocating P-type ATPase) gene. DNase I protection experiment indicated that PMTR protein protected the region over -35 box and close to -10 box. DNase I hypersensitive bases were shown at C and A bases of labeled template strand and at G and C bases of labeled non-template strand of DNA. These hypersensitive bases were appeared in other metalloregulatory proteins of MerR family, which suggests protein-induced DNA bending.

Proteus mirabilis 전사 조절($\underline{P}$roteus $\underline{m}$irabilis $\underline{t}$ranscription $\underline{r}$egulator ) 단백질의 중금속 결합 부위에 대한 아미노산 서열분석에서 PMTR 단백질은 ZntR (아연 저항성) 단백질이 아닌 CueR (구리 저항성) 단백질과 동일한 환경이다. 그리고 겔시프트 법(gel shift assay) 실험에 의하면 PMTR 단백질은 Escherichia coli의 zntA (zinc-translocating P-type ATPase gene) 프로모터에 결합하지 않고 copA (copper-translocating P-type ATPase gene) 프로모터와 Proteus mirabilis에서 atpase (copper-translocating P-type ATPase gene) 프로모터에 결합하였다. DNase I protection 실험에서 PMTR 단백질 결합부위와 DNase I 민감성 염기들이 관찰되었다. P. mirabilis atpase 프로모터에서 민감성 염기로 주형가닥(template strand)에서 C와 A 그리고 비주형가닥(non-template strand)에서 G와 C 염기들이다. 이런 민감성 염기들은 다른 MerR 패밀리 단백질에서 또한 관찰되었으며, 이것은 단백질에 의한 DNA bending을 의미한다.

Keywords

References

  1. Ansari, A.Z., J.E. Bradner, and T.V. O'Halloran. 1995. DNA-bend modulation in a repressor-to-activator switching mechanism. Nature 374, 371-375.
  2. Barkay, T., S.M. Miller, A.O. Summer. 2003. Bacterial mercury resistance from atoms to ecosystems FEMS Microbiol. Rev. 27, 355-384. https://doi.org/10.1016/S0168-6445(03)00046-9
  3. Brown, N.L., J.V. Stoyanov, S.P. Kidd, and J.L. Hobman. 2003. The MerR family of transcriptional regulators. FEMS Microbiol. Rev. 27, 145-163 https://doi.org/10.1016/S0168-6445(03)00051-2
  4. Busenlehner, L.S., T.C. Weng, J.E. Penner-Hahn, and D.P. Giedroc. 2002. Elucidation of primary ($\alpha3N$) and vestigial ($\alpha5$) heavy metal binding sites in Staphlococcus aureus pI258 CadC: evolutionary implications for metal ion selectivity of ArsR/SmtB metal sensor proteins. J. Mol. Biol. 319, 685-701. https://doi.org/10.1016/S0022-2836(02)00299-1
  5. Changela, A., K. Chen, Y. Xue, J. Holschen, C.E. Outten, T.V. O'Halloran, and A. Mondragon. 2003. Molecular basis of metalion selectivity and zeptomolar sensitivity by CueR. Science 301, 1383-1387. https://doi.org/10.1126/science.1085950
  6. Gill, S.C. and P.H. von Hippel. 1989. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319-326. https://doi.org/10.1016/0003-2697(89)90602-7
  7. Hobman, J.L. 2007. MerR family transcription activators: similar design, different specificities. Mol. Microbiol. 63, 1275-1278. https://doi.org/10.1111/j.1365-2958.2007.05608.x
  8. Huffman, J.L. 2001. DNA and metal specificity of MerR family member PMTR, Proteus mirabilis transcription regulator. Ph. D. thesis. Oregon Health and Sciences University.
  9. Kar, S.R., J. Lebowitz, S. Blume, K.B. Taylor, and L.M. Hall. 2001. SmtB-DNA and protein-protein interactions in the formation of the cyanobacterial metallothionein repression complex: $Zn^{2+}$ does not dissociate the protein-DNA compex in vitro. Biochemistry 40, 13378-13389. https://doi.org/10.1021/bi011289f
  10. Maxm, A. and W. Gilbert. 1977. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74. 560-564. https://doi.org/10.1073/pnas.74.2.560
  11. Nies, D.H. 1999. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 51, 730-750. https://doi.org/10.1007/s002530051457
  12. Noll, M., K. Petrukhin, and S. Lutchenko. 1998. Identification of a novel transcription regulator from Proteus mirabilis, PMTR, revealed a possible role of YJAI protein in balancing zinc in E.coli. J. Biol. Chem. 273, 21393-21401. https://doi.org/10.1074/jbc.273.33.21393
  13. Outten, C.E., F.W. Outten, and T.V. O'Halloran. 1999. DNA distortion mechanism for transcriptional activation by ZntR. J. Biol. Chem. 275, 31024-31029.
  14. Outten, F.W., C.E. Outten, J. Hale, and T.V. O'Halloran. 2000. Transcription activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, CueR. J. Biol. Chem. 275, 31024-31029. https://doi.org/10.1074/jbc.M006508200
  15. Permina, E.A., A.E. Kazakov, O.V. Kalininia, and M.S. Gelfand. 2006. Comparative genomics of regulation of heavy metal resistance in Eubacteria. BMC Microbiol. 6, 1-11. https://doi.org/10.1186/1471-2180-6-1
  16. Singh, V.K., A. Xiong, T.R. Usgaard, S. Chakrabarti, R. Deora, T.K. Misra, and R.K. Jayaswal. 1999. ZntR is an autoregulatory protein and negatively regulates the chromosomal zinc resistance operon znt of Staphylococcus aureus. Mol. Microbiol. 33, 200- 207. https://doi.org/10.1046/j.1365-2958.1999.01466.x
  17. Zhen, M., F.E. Jacobsen, and D.P. Giedroc. 2009. Coordination chemistry of bacterial metal transport and sensing. Chem. Rev. 109, 4644-4681. https://doi.org/10.1021/cr900077w