References
- Ansari, A.Z., J.E. Bradner, and T.V. O'Halloran. 1995. DNA-bend modulation in a repressor-to-activator switching mechanism. Nature 374, 371-375.
- Barkay, T., S.M. Miller, A.O. Summer. 2003. Bacterial mercury resistance from atoms to ecosystems FEMS Microbiol. Rev. 27, 355-384. https://doi.org/10.1016/S0168-6445(03)00046-9
- Brown, N.L., J.V. Stoyanov, S.P. Kidd, and J.L. Hobman. 2003. The MerR family of transcriptional regulators. FEMS Microbiol. Rev. 27, 145-163 https://doi.org/10.1016/S0168-6445(03)00051-2
-
Busenlehner, L.S., T.C. Weng, J.E. Penner-Hahn, and D.P. Giedroc. 2002. Elucidation of primary (
$\alpha3N$ ) and vestigial ($\alpha5$ ) heavy metal binding sites in Staphlococcus aureus pI258 CadC: evolutionary implications for metal ion selectivity of ArsR/SmtB metal sensor proteins. J. Mol. Biol. 319, 685-701. https://doi.org/10.1016/S0022-2836(02)00299-1 - Changela, A., K. Chen, Y. Xue, J. Holschen, C.E. Outten, T.V. O'Halloran, and A. Mondragon. 2003. Molecular basis of metalion selectivity and zeptomolar sensitivity by CueR. Science 301, 1383-1387. https://doi.org/10.1126/science.1085950
- Gill, S.C. and P.H. von Hippel. 1989. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319-326. https://doi.org/10.1016/0003-2697(89)90602-7
- Hobman, J.L. 2007. MerR family transcription activators: similar design, different specificities. Mol. Microbiol. 63, 1275-1278. https://doi.org/10.1111/j.1365-2958.2007.05608.x
- Huffman, J.L. 2001. DNA and metal specificity of MerR family member PMTR, Proteus mirabilis transcription regulator. Ph. D. thesis. Oregon Health and Sciences University.
-
Kar, S.R., J. Lebowitz, S. Blume, K.B. Taylor, and L.M. Hall. 2001. SmtB-DNA and protein-protein interactions in the formation of the cyanobacterial metallothionein repression complex:
$Zn^{2+}$ does not dissociate the protein-DNA compex in vitro. Biochemistry 40, 13378-13389. https://doi.org/10.1021/bi011289f - Maxm, A. and W. Gilbert. 1977. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74. 560-564. https://doi.org/10.1073/pnas.74.2.560
- Nies, D.H. 1999. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 51, 730-750. https://doi.org/10.1007/s002530051457
- Noll, M., K. Petrukhin, and S. Lutchenko. 1998. Identification of a novel transcription regulator from Proteus mirabilis, PMTR, revealed a possible role of YJAI protein in balancing zinc in E.coli. J. Biol. Chem. 273, 21393-21401. https://doi.org/10.1074/jbc.273.33.21393
- Outten, C.E., F.W. Outten, and T.V. O'Halloran. 1999. DNA distortion mechanism for transcriptional activation by ZntR. J. Biol. Chem. 275, 31024-31029.
- Outten, F.W., C.E. Outten, J. Hale, and T.V. O'Halloran. 2000. Transcription activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, CueR. J. Biol. Chem. 275, 31024-31029. https://doi.org/10.1074/jbc.M006508200
- Permina, E.A., A.E. Kazakov, O.V. Kalininia, and M.S. Gelfand. 2006. Comparative genomics of regulation of heavy metal resistance in Eubacteria. BMC Microbiol. 6, 1-11. https://doi.org/10.1186/1471-2180-6-1
- Singh, V.K., A. Xiong, T.R. Usgaard, S. Chakrabarti, R. Deora, T.K. Misra, and R.K. Jayaswal. 1999. ZntR is an autoregulatory protein and negatively regulates the chromosomal zinc resistance operon znt of Staphylococcus aureus. Mol. Microbiol. 33, 200- 207. https://doi.org/10.1046/j.1365-2958.1999.01466.x
- Zhen, M., F.E. Jacobsen, and D.P. Giedroc. 2009. Coordination chemistry of bacterial metal transport and sensing. Chem. Rev. 109, 4644-4681. https://doi.org/10.1021/cr900077w