Cure Kinetics and Dynamic Mechanical Properties of an Epoxy/Polyoxypropylene Diamine System

에폭시/폴리옥시프로필렌 디아민계의 경화 반응속도 및 동역학 특성 분석

  • Huang, Guang-Chun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee, Jong-Keun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 황광춘 (금오공과대학교 고분자공학과) ;
  • 이종근 (금오공과대학교 고분자공학과)
  • Received : 2010.10.08
  • Accepted : 2011.02.08
  • Published : 2011.05.25

Abstract

The cure kinetics of a bisphenol A epoxy resin and polyoxypropylene diamine curing agent system are investigated in both dynamic and isothermal conditions by differential scanning calorimetry (DSC). In dynamic experiments, the shift of exothermic peaks obtained at different heating rates is used to obtain activation energy of overall cure reaction based on the methods of Ozawa and Kissinger. Isothermal DSC data at different temperatures are fitted to an autocatalytic Kamal kinetic model. The kinetic model is in a good agreement with the experimental data in the initial stage of cure. A diffusion effect is incorporated to describe the later stage of cure, predicting the cure kinetics over the whole range of curing process. Also, dynamic mechanical analysis is performed to evaluate the storage modulus and average molecular weight between crosslinkages.

비즈페놀 A 에폭시 수지와 폴리옥시프로필렌 디아민 경화제계의 경화 반응속도를 시차주사열량계을 이용하여 승온 및 등온 경화조건에서 조사하였다. 승온실험에서는 Ozawa와 Kissinger법을 이용하여 다양한 가열속도에서 얻어진 발열피크의 이동으로부터 활성화 에너지를 구하였다. 또한 등온실험에서 얻어진 데이터는 자촉매 효과를 고려한 Kamal의 속도모델로 분석하였으며, 그 결과 경화반응 초기의 속도우세 구간에서 실험데이터와 잘 맞았다. 반응 후기의 확산우세 구간에서는 확산효과를 적용하여 경화의 전체과정을 기술하였다. 또한 동역학분석을 이용하여 경화 후 저장 탄성률과 가교점간의 평균분자량을 측정하였다.

Keywords

References

  1. H. Lee and K. Neville, Handbook of Epoxy Resins, McGraw-Hill Inc, New York, 1982.
  2. F. Sawa, S. Nishijima, and T. Okada, Cryogenics, 35, 767 (1995). https://doi.org/10.1016/0011-2275(95)90910-8
  3. N. Albritton and W. Young, Cryogenics, 36, 713 (1996). https://doi.org/10.1016/0011-2275(96)00067-7
  4. O. P. Anashkin, V. E. Keilin, and V. M. Patrikeev, Cryogenics, 39, 795 (1999). https://doi.org/10.1016/S0011-2275(99)00089-2
  5. H. C. Hsia, C. C. M. Ma, M. S. Li, Y. S. Li, and D. S. Chen, J. Appl. Polym. Sci., 52, 1137 (1994). https://doi.org/10.1002/app.1994.070520814
  6. H. Ng and I. M. Zloczower, Polym. Eng. Sci., 33, 211 (1993). https://doi.org/10.1002/pen.760330404
  7. T. Ueki, K. Nojima, K. Asano, S. Nishijima, and T. Okada, Adv. Cryog. Eng. Mater., 44, 277 (1998).
  8. T. Ueki, S. Nishijima, and Y. Izumi, Cryogenics, 45, 141 (2005). https://doi.org/10.1016/j.cryogenics.2004.07.002
  9. J. Macan, I. Brnardic, M. Ivankovic, and H. J. Mencer, J. Therm. Anal. Calor., 81, 369 (2005). https://doi.org/10.1007/s10973-005-0794-3
  10. A. R. Cedeno and C. S. P. Sung, Polymer, 46, 9378 (2005). https://doi.org/10.1016/j.polymer.2005.04.063
  11. M. Ilavsky, Z. Bubenikova, K. Bouchal, J. Nedbal, and J. Fahrich, Polym. Bull., 42, 465 (1999). https://doi.org/10.1007/s002890050490
  12. F. Fdez de Nograro, R. Llano-Ponte, and I. Mondragon, Polymer, 37, 1589 (1996). https://doi.org/10.1016/0032-3861(96)83707-4
  13. R. B. Gosnell and H. H. Levine, J. Macromol. Sci.-Chem., A3, 1381 (1969).
  14. P. Froimowicz, A. Gandini, and M. Strumia, Tetrahedron Lett., 46, 2653 (2005). https://doi.org/10.1016/j.tetlet.2005.02.086
  15. W. M. Chen, P. Li, Y. H. Yu, and X. P. Yang, J. Appl. Polym. Sci., 107, 1493 (2008). https://doi.org/10.1002/app.26861
  16. P. Li, X. P. Yang, Y. H. Yu, and D. S. Yu, J. Appl. Polym. Sci., 92, 1124 (2003).
  17. D. Rosu, F. Mustata, and C. N. Cascaval, Thermochim. Acta, 370, 105 (2001). https://doi.org/10.1016/S0040-6031(00)00787-5
  18. S. Montserrat and J. Malek, Thermochim. Acta, 228, 47 (1993). https://doi.org/10.1016/0040-6031(93)80273-D
  19. K. H. Lee and D. G. Lee, Comp. Struc., 86, 37 (2008). https://doi.org/10.1016/j.compstruct.2008.03.018
  20. E. A. Turi, Thermal Characterization of Polymeric Materials, 2nd edition, Academic Press, San Diego, 1981.
  21. G. Wisanrakkit and J. K. Gillham, J. Appl. Polym. Sci., 41, 2885 (1990). https://doi.org/10.1002/app.1990.070411129
  22. H. E. Kissinger, Anal. Chem., 29, 1702 (1959).
  23. T. Ozawa, Bull. Chem. Soc. Jpn., 38, 1881 (1965). https://doi.org/10.1246/bcsj.38.1881
  24. T. Ozawa, J. Therm. Anal., 2, 301 (1970). https://doi.org/10.1007/BF01911411
  25. M. R. Kamal, Polym. Eng. Sci,, 13, 59 (1973). https://doi.org/10.1002/pen.760130110
  26. S. Sourour and M. R. Kamal, Thermochim. Acta, 14, 41 (1976). https://doi.org/10.1016/0040-6031(76)80056-1
  27. D. H. Kim and S. C. Kim, Polym. Bull., 18, 533 (1987).
  28. U. Khanna and M. Chanda, J. Appl. Polym. Sci., 49, 319 (1993). https://doi.org/10.1002/app.1993.070490212
  29. A. Dutta and M. E. Ryan, J. Appl. Polym. Sci., 24, 635 (1979). https://doi.org/10.1002/app.1979.070240302
  30. L. Chiao and R. E. Lyon, J. Comp. Mater., 24, 739 (1990). https://doi.org/10.1177/002199839002400704
  31. L. Barral, J. Cano, J. Lopez, I. Lopez-Bueno, P. Nogueira, A. Torres, C. Ramirez, and M. J. Abad, Thermochim. Acta, 344, 127 (2000). https://doi.org/10.1016/S0040-6031(99)00335-4
  32. M. Harsch, J. K. Kocsis, and M. Holst, Eur. Polym, J., 43, 1168 (2004).
  33. H. Cai, P. Li, G. Sui, Y. Yu, G. Li, X. Yang, and S. Ryu, Thermochim. Acta, 473, 101 (2008). https://doi.org/10.1016/j.tca.2008.04.012
  34. X. Sheng, J. K. Lee, and M. R. Kessler, Polymer, 50, 1264 (2009). https://doi.org/10.1016/j.polymer.2009.01.021
  35. A. S. Vallely and J. K. Gillham, J. Appl. Polym. Sci., 64, 39 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970404)64:1<39::AID-APP4>3.0.CO;2-S
  36. J. K. Lee, J. Y. Hwang, and J. K. Gillham, J. Appl. Polym. Sci., 81, 396 (2001). https://doi.org/10.1002/app.1451