Mechanical Property and Cell Compatibility of Silk/PLGA Hybrid Scaffold; In Vitro Study

실크/PLGA 하이브리드 지지체의 기계적 물성과 세포친화력; in vitro 연구

  • Song, Yi-Seul (Dept. of BIN Fusion Tech & Polymer Fusion Research Center, Department of Polymer.Nano Sci Tech, Chonbuk National University) ;
  • Yoo, Han-Na (Dept. of BIN Fusion Tech & Polymer Fusion Research Center, Department of Polymer.Nano Sci Tech, Chonbuk National University) ;
  • Eum, Shin (Dept. of BIN Fusion Tech & Polymer Fusion Research Center, Department of Polymer.Nano Sci Tech, Chonbuk National University) ;
  • Kim, On-You (Dept. of BIN Fusion Tech & Polymer Fusion Research Center, Department of Polymer.Nano Sci Tech, Chonbuk National University) ;
  • Yoo, Suk-Chul (Dept. of BIN Fusion Tech & Polymer Fusion Research Center, Department of Polymer.Nano Sci Tech, Chonbuk National University) ;
  • Kim, Hyung-Eun (Dept. of BIN Fusion Tech & Polymer Fusion Research Center, Department of Polymer.Nano Sci Tech, Chonbuk National University) ;
  • Lee, Dong-Won (Dept. of BIN Fusion Tech & Polymer Fusion Research Center, Department of Polymer.Nano Sci Tech, Chonbuk National University) ;
  • Khang, Gil-Son (Dept. of BIN Fusion Tech & Polymer Fusion Research Center, Department of Polymer.Nano Sci Tech, Chonbuk National University)
  • 송이슬 (전북대학교 BIN 융합공학과, 고분자 융합소재 연구센터, 고분자나노공학과) ;
  • 유한나 (전북대학교 BIN 융합공학과, 고분자 융합소재 연구센터, 고분자나노공학과) ;
  • 엄신 (전북대학교 BIN 융합공학과, 고분자 융합소재 연구센터, 고분자나노공학과) ;
  • 김온유 (전북대학교 BIN 융합공학과, 고분자 융합소재 연구센터, 고분자나노공학과) ;
  • 유석철 (전북대학교 BIN 융합공학과, 고분자 융합소재 연구센터, 고분자나노공학과) ;
  • 김형은 (전북대학교 BIN 융합공학과, 고분자 융합소재 연구센터, 고분자나노공학과) ;
  • 이동원 (전북대학교 BIN 융합공학과, 고분자 융합소재 연구센터, 고분자나노공학과) ;
  • 강길선 (전북대학교 BIN 융합공학과, 고분자 융합소재 연구센터, 고분자나노공학과)
  • Received : 2010.07.20
  • Accepted : 2010.11.16
  • Published : 2011.05.25

Abstract

The design of new bioactive scaffolds offering physiologic environment for tissue formation is an important frontier in biomaterials research. In this study, we performed compressive strength, water-uptake ability, and SEM analysis for physical property assessment of 3-D silk/PLGA scaffold, and investigated the adhesion, proliferation, phenotype maintenance, and inflammatory responses of RAW 264.7 and NIH/3T3 for cell compatibility. Scaffolds were prepared by the solvent casting/salt leaching method and their compressive strength and water-uptake ability were excellent at 20 wt% silk content. Result of cell compatibility assay showed that inflammatory responses distinctly decreased, and initial adhesion and proliferation were maximized at 20 wt% silk content. In conclusion, we suggest that silk/PLGA scaffolds may be useful to tissue engineering applications.

조직 형성을 위한 생리학적 환경을 제공하는 새로운 생활성 지지체의 디자인은 생체재료 연구에서 중요한 분야이다. 본 연구에서는 3차원적 실크/PLGA 지지체의 물성평가를 위해 압축강도, 수분친화도, SEM 분석을 하였으며, 세포친화성 평가를 위해 RAW 264.7과 NIH/3T3의 부착, 증식 및 표현형유지와 염증반응에 미치는 영향을 조사하였다. 지지체는 용매 캐스팅/염 추출법으로 제조하였고, 압축강도, 수분친화도 면에서 실크 함량이 20 wt%에서 우수함 확인했으며, 표면의 거침도활 높여 세포부착에 긍정적인 구조임을 확인하였다. 세포친화성 분석 결과 실크함량이 20 wt%인 실크/PLGA 지지체에서 높은 초기부작도 및 증식률을 보였으며, 실크함량이 20 wt%에서 염증반응이 눈에 띄게 감소함을 확인하였다. 조직공학적 응용에 실크/PLGA 지지체가 유용할 것이라 판단하였다.

Keywords

References

  1. R. Langer and D. Tirrell, Nature, 428, 487 (2004). https://doi.org/10.1038/nature02388
  2. S. Petit-Zeman, Nature Biotech., 19, 201 (2001). https://doi.org/10.1038/85619
  3. G. Khang, S. J. Lee, I. Lee, and H. B. Lee, Polym. Sci. Tech., 13, 4 (2002).
  4. I. G. Park, S. H. Oh, and J. H. Lee, Tissue Eng. Regen. Med., 1, 164 (2004).
  5. W. Y. Jang, S. H. Kim, I. Lee, M. S. Kim, J. M. Rhee, G. Khang, and H. B. Lee, Tissue Eng. Regen. Med., 2, 100 (2005).
  6. S. J. Lee, G. Khang, J. H. Lee, Y. M. Lee, and H. B. Lee, Polymer(Korea), 24, 877 (2000).
  7. K. S. Park, S. M. Kim, M. S. Kim, I. Lee, J. M. Rhee, H. B. Lee, and G. Khang, Polymer(Korea), 30, 455 (2006).
  8. S. L. Ishaug-Riley, L. E. Okun, G. Prado, M. A. Applegate, and A. Ratcliffe, Biomaterials, 20, 2245 (1999). https://doi.org/10.1016/S0142-9612(99)00155-6
  9. S. M. Kim, S. H. Kim, C. M. Kim, A. Y. Oh, G. A. Kim, I. W. Lee, J. M. Rhee, G. Khang, M. S. Kim, and H. B. Lee, Tissue Eng. Regen. Med., 4, 179 (2007).
  10. Y. K. Ko, S. H. Kim, J. S. Jeong, H. J. Ha, S. J. Yoon, J. M. Rhee, M. S. Kim, H. B. Lee, and G. Khang, Polymer(Korea), 31, 14 (2007).
  11. G. Khang, M. S. Kim, S. H. Cho, and H. B. Lee, Tissue Eng. Regen. Med., 1, 9 (2004).
  12. N. R. Jeon, E. H. Jo, H. J. Park, J. S. Choi, S. J. Lee, M. V. Dyke, J. J. Lee, D. Lee, J. M. Rhee, and G. Khang, Tissue Eng. Regen. Med., 6, 819 (2009).
  13. H. H. Hong, S. H. Kim, A. Y. Oh, N. R. Jeon, S. H. Jung, S. J. Lee, M. V. Dyke, J. J. Yoo, Y. Son, J. M. Rhee, and G. Khang, Tissue Eng. Regen. Med., 5, 861 (2008).
  14. E. I. Shishatskaya, T. G. Volova, A. P. Puzyr, and O. A. Mogilnaya, J. Mater. Sci. : Mater. Med., 15, 719 (2004). https://doi.org/10.1023/B:JMSM.0000030215.49991.0d
  15. T. Volova, E. Shishatskaya, V. Sevastianov, S. Efremov, and O. Mogilnaya, Biochem. Eng. J., 16, 125 (2003). https://doi.org/10.1016/S1369-703X(03)00038-X
  16. Y. L. Cui, A. D. Qi, W. G. Liu, S. H. Wang, H. Wang, D. M. Ma, and K. D. Yao, Biomaterials, 24, 3859 (2003). https://doi.org/10.1016/S0142-9612(03)00209-6
  17. H. H. Hong, S. H. Kim, A. Y. Oh, N. R. Jeon, S. H. Jung, S. J. Lee, M. Dyke, J. J. Yoo, Y. Son, J. M. Rhee, and G. Khang, Tissue Eng. Regen. Med., 5, 4 (2008).
  18. N. Minoura, S. I. Aiba, M. Higuchi, Y. Gotoh, M. Tsukada, and Y. Imai, Biochem. Biophys. Res. Commun., 208, 511 (1995). https://doi.org/10.1006/bbrc.1995.1368
  19. N. Minoura, M. Tsukada, and M. Nagura, Polymer, 31, 26, (1990).
  20. M. Santin, A. Motta, G. Freddi, and M. Gannas, J. Biomed. Mater. Res., 46, 382 (1999). https://doi.org/10.1002/(SICI)1097-4636(19990905)46:3<382::AID-JBM11>3.0.CO;2-R
  21. N. Minoura, S. Aiba, Y. Gotoh, M. Tsukada, and Y. Imai, J. Biomed. Mater. Res., 29, 1215 (1995). https://doi.org/10.1002/jbm.820291008
  22. G. Altman, R. L. H. Horan, J. Moreau, I. Martin, J. Richmond, and D. L. Kaplan, Biomaterials, 23, 4131 (2002). https://doi.org/10.1016/S0142-9612(02)00156-4
  23. H. K. Soong and K. R. Kenyon, Ophthalmology, 91, 479 (1984). https://doi.org/10.1016/S0161-6420(84)34273-7
  24. S. Sofia, M. B. McCarthy, G. Gronowicz, and D. L. Kaplan, J. Biomed. Mater. Res., 54, 139 (2001). https://doi.org/10.1002/1097-4636(200101)54:1<139::AID-JBM17>3.0.CO;2-7
  25. N. Minoura, M. Tsukada, and M. Nagura, Biomaterials, 11, 430 (1990). https://doi.org/10.1016/0142-9612(90)90100-5
  26. J. Qian, Y. Liu, H. Liu, T. Yu, and J. Deng, Biosens. Bioelectron., 12, 1213 (1997). https://doi.org/10.1016/S0956-5663(97)00056-0
  27. T. Hanawa, A. Watanabe, T. Tsuchiya, R. Ikoma, M. Hidaka, and M. Sugihara, Chem. Pharm. Bull., 42, 282(1995).
  28. B. Panilaitis, G. H. Altman, J. Chen, H. J. Jang, V. Karageorgiou, and D. L. Kaplan, Biomaterials, 24, 3079 (2003). https://doi.org/10.1016/S0142-9612(03)00158-3
  29. G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplaln, Biomaterials, 24, 401 (2003). https://doi.org/10.1016/S0142-9612(02)00353-8
  30. Y. Iwasaki, S. Sawada, and K. Ishihara, Biomaterials, 23, 3897 (2002). https://doi.org/10.1016/S0142-9612(02)00135-7
  31. C. Gerad, Nature Immunol., 6, 366 (2005). https://doi.org/10.1038/ni0405-366
  32. S. D. Patil, F. Papadmitrakopoulos, and D. J. Burgess, J. Control. Release, 117, 68 (2007). https://doi.org/10.1016/j.jconrel.2006.10.013
  33. G. R. Kose, F. Korkusuz, and P. Korkusuz, Tissue Eng., 10, 1234 (2004). https://doi.org/10.1089/ten.2004.10.1234
  34. S. H. Baek, J. H. Lee, J. W. Lee, M. L. Cho, S. I. Kim, J. I. Kim, D. S. Kim, S. H. Lee, and G. T. Kim, J. Kor. Rheum. Assoc., 15, 2 (2008).
  35. U. Klueh, D. I. Dorsky, F. Moussy, and D. L. Kreutzer, J. Biomed. Mater. Res. A, 67, 838 (2003).
  36. B. S. Choi, S. H. Kim, S. J. Yoon, H. J. Ha, M. S. Kim, Y. I. Yang, Y. Son, G. Khang, J. M. Rhee, and H. B. Lee, Tissue Eng. Regen. Med., 3, 295 (2006).
  37. S. H. Kim, K. S. Park, B. S. Choi, J. M. Rhee, M. S. Kim, H. B. Lee, and G. Khang, Adv. Exp. Med. Biol., 585, 167 (2006).
  38. Y. K. Ko, S. H. Kim, J. S. Jeong, H. J. Ha, S. J. Yoon, J. M. Rhee, M. S. Kim, H. B. Lee, and G. Khang, Polymer(Korea), 31, 14 (2006).
  39. M. O. Beak, S. H. Kim, J. W. So, J. M. Rhee, M. S. Kim, H. B. Lee, and G. Khang, Tissue Eng. Regen. Med., 4, 571 (2007).
  40. B. Wang, J. Han, Y. Gao, Z. Xiao, B. Chen, X. Wang, W. Zhao, and J. Dai, Neurosci. Lett., 421, 191 (2007). https://doi.org/10.1016/j.neulet.2007.04.081
  41. V. Karageorgiou and D. L. Kaplan, Biomaterials, 26, 5474 (2005). https://doi.org/10.1016/j.biomaterials.2005.02.002
  42. H. K. Hong, S. H. Kim, S. K. Lee, Y. H. Lee, S. J. Kim, O. Y. Kim, D. Lee, J. M. Rhee, Y. Son, and G. Khang, Tissue Eng. Regen. Med., 6, 1029 (2009).
  43. J. W. Jang, B. Lee, C. W. Han, M. S. Kim, S. H. Cho, H. B. Lee, and G. Khang, Polymer(Korea), 28, 382 (2006).
  44. J. C. Keller, G. B. Schneider, C. M. Stanford, and B. Kellogg, Implant Dent, 12, 175 (2003). https://doi.org/10.1097/01.ID.0000058309.77613.87
  45. J. K. Park, News & Information for Chemical Engineers, 21, 613 (2003).
  46. D. J. Mooney, L. Cima, R. Langer, L. K. Hansen, D. E. Injegber, and J. P. Vacanti, Mat. Res. Soc. Symp. Proc., 252, 345 (1992).
  47. A. G. Mikos and J. S. Temenoff, Elec. J. Biotech., 3, 1 (2000).
  48. J. L. Urban, H. M. Shepard, J. L. Rothstein, B. J. Sugarman, and J. Schreiber, Proc. Natl. Acad. Sci., 83, 5233(1986). https://doi.org/10.1073/pnas.83.14.5233
  49. C. Nathan, J. FASEB, 6, 3051 (1992). https://doi.org/10.1096/fasebj.6.12.1381691
  50. C. Nathan, Cell, 82, 873 (1995). https://doi.org/10.1016/0092-8674(95)90019-5