Fabrication and Biocompatibility of Rutin-containing PHBV Nanofibrous Scaffolds

천연 항균물질 루틴을 함유하는 PHBV 나노섬유의 제조 및 생체적합성

  • Chae, Won-Pyo (Department of Polymer Science & Engineering, Kyungpook National University) ;
  • Xing, Zhi-Cai (Department of Polymer Science & Engineering, Kyungpook National University) ;
  • Kim, Yong-Jin (Department of Biomedical Engineering, Catholic University of Deagu) ;
  • Sang, Hie-Sun (School of Fire-Protecting Technology. Kyungil University) ;
  • Huh, Man-Woo (School of Textile and Fashion Technology, Kyungil University) ;
  • Kang, Inn-Kyu (Department of Polymer Science & Engineering, Kyungpook National University)
  • Received : 2010.10.25
  • Accepted : 2010.12.23
  • Published : 2011.05.25

Abstract

Rutin (R) exhibits a wide range of biological activities including anticarcinogenic, antiinflammatory and antiviral actions. The purpose of this study is to investigate the effect of rutin concentrations (1 and 3 wt%) on the antibacterial activity of poly(3-hydroxybutylate-co-hydroxyvalerate) (PHBV) scaffolds. Antibacterial activity was evaluated by using Staphylococcus aureus and Klebsiella pneumoniae. Furthermore, the qualitative ongrowth of human KB endothelial cells was done to study in vitro cytotoxicity of the scaffolds. As the results, PHBV scaffolds containing 3 wt% rutin completely inhibited the proliferation of Staphylococcus aureus and Klebsiella pneumoniae. In addition, the PHBV/R scaffolds used in this study did not show any cytotoxicity when evaluated them with KB endothelial cells.

루틴은 항발암, 소염제, 항바이러스성 기능을 갖는 물질이다. 미생물이 만들어낸 폴리에스테르인 PHBV와 루틴을 전기방사하여 나노섬유 부직포를 얻었다. 나노섬유 부직포의 항균성은 황색포도상구균(Staphylococcus aureus), 폐렴간균(Klebsiella pneumoniae)을 사용하여 평가하였고, KB 셀을 이용하여 세포독성을 평가하였다. 그 결과 루틴을 3 wt% 함유할 때 지지체는 우수한 항균성을 보였으며, KB 셀을 이용한 실험결과로부터 루틴을 함유하는 PHBV 지지체는 세포독성을 나타내지 않음을 알 수 있었다.

Keywords

References

  1. M. F. Abu Bakar, M. Mohamed, A. Rahmat, and J. Fry, Food Chem., 113, 479 (2009). https://doi.org/10.1016/j.foodchem.2008.07.081
  2. I. Kreft, N. Fabjan, and M. Germ, Fagopyrum, 20, 7 (2003).
  3. C. Wagner, R. Fachinetto, C. L. Corte, V. B. Brito, D. Severo. G. D. O. C. Dias, A. F. Morel, C. W. Nogueira, and, J. B. T. Rocha, Brain Res., 1107, 192 (2006). https://doi.org/10.1016/j.brainres.2006.05.084
  4. J. Yang, J. Guo, and J. Yuan, LWT-Food Science and Technology, 41, 1060 (2008). https://doi.org/10.1016/j.lwt.2007.06.010
  5. B. M. Min, G. Lee, S. H. Kim, Y. S. Nam, T. S. Lee, and W. H. Park, Biomaterials, 25, 131 (2004).
  6. G. Ginaalska, D. Kowalczuk, and M. Osinska, Intern. J. Pharm., 288, 131 (2008).
  7. C. W. Pouton and S. Akhtar, Adv. Drug Deliever. Rev., 18, 133 (1996). https://doi.org/10.1016/0169-409X(95)00092-L
  8. G. T. Kose, H. Kenar, H. Hasirci, and V. Hasirci, Biomaterials, 24, 1949 (2003). https://doi.org/10.1016/S0142-9612(02)00613-0
  9. S. F. Williams, D. P. Martin, D. M. Horowiz, and O. P. Peoples, Int. J. Biol. Macromol., 25, 111 (1999). https://doi.org/10.1016/S0141-8130(99)00022-7
  10. P. J. Hocking, and R. H. Marchessault, Chemistry and Technology of Biodegradable Polymers, Blackie Academic and Professional, New York, 1994.
  11. H. Guan, C. Shao, S. Wen, B. Chen, J. Gong, and X. Yang, Mater. Chem. Phys., 82, 1002 (2003). https://doi.org/10.1016/j.matchemphys.2003.09.003
  12. H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, Biomaterials, 24, 2077 (2003). https://doi.org/10.1016/S0142-9612(02)00635-X
  13. J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang, and X. Jing, J. Control. Release, 92, 227 (2003). https://doi.org/10.1016/S0168-3659(03)00372-9
  14. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003). https://doi.org/10.1016/S0266-3538(03)00178-7
  15. Z. C. Xing, W. P. Chae, J. Y. Beak, M. J. Choi, Y. S. Jung, and I. K. Kang, Biomacromolecules, 11, 1248 (2010). https://doi.org/10.1021/bm1000372
  16. H. M. Kim, W. P. Chae, K. W. Chang, S. S. Chun, S. Y. Kim, Y. S. Jeong, and I. K. Kang, J. Biomed. Mater. Res., 94, 380 (2010).
  17. Z. C. Xing, W. P. Chae, M. W. Huh, L. S. Park, S. Y. Park, G. Kwak, K. B. Yoon, and I. K. Kang, J. Nanosci. Nanotechnol., 11, 61 (2011). https://doi.org/10.1166/jnn.2011.3551
  18. L. Huang, R. A. McMillan, R. P. Apkarian, B. Pourdeyhimi, V. P. Contocello, and E. L. Chaikof, Macromolecules, 33, 2989 (2000). https://doi.org/10.1021/ma991858f
  19. R. A. Caruso, J. H. Schattka, and A. Greiner, Adv. Mater., 13, 1577 (2001). https://doi.org/10.1002/1521-4095(200110)13:20<1577::AID-ADMA1577>3.0.CO;2-S
  20. Z. Chen, M. D. Forster, W. Zhou, H. Fong, and D. H. Reneker, Macromolecules, 34, 6156 (2001). https://doi.org/10.1021/ma991857n
  21. W. J. Li, T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res., 60, 613 (2002).
  22. H. Arima, H. Ashida, and G. I. Danno, Biosci. Biotechnol. Biochem., 66, 1009 (2002). https://doi.org/10.1271/bbb.66.1009
  23. M. Alia, R. Mateos, S. Ramos, E. Lecumberri, L. Bravo, and L. Goya, Eur. J. Nutr., 45, 19 (2006). https://doi.org/10.1007/s00394-005-0558-7
  24. T. Hoshiba, M. Wakejima, C. S. Cho, G. Shiota, and T. Akaike, J. Biomed. Mater. Res. A, 85, 228 (2008).
  25. T. Akaike, S. Tobe, A. Kobayashi, M. Goto, and K. Kobayashi, Gastroenterol. Jpn., 28, 45 (1993).