Fabrication of Electrochemical Microbial Biosensor Based on MWNT Supports Prepared by Radiation-Induced Graft Polymerization

방사선 그래프트법에 의해 제조된 탄소나노튜브 지지체를 기반으로 한 전기화학 미생물 바이오센서의 제작

  • Received : 2010.10.26
  • Accepted : 2011.01.24
  • Published : 2011.05.25

Abstract

A multi-walled carbon nanotube (MWNT) support with dual properties, an ionic property via tetra-amine and unpaired electrons via tri-amine, was prepared by radiation-induced graft polymerization of glycidyl methacrylate (GMA) and the subsequent amination of its epoxy group. The electrochemical microbial biosensor (EMB) was then fabricated by immobilization of a microbe (Alkaligenes spp.) onto the dual property-modified electrode, which was prepared with the mixture of the MWNT support and a $Nafion^{(R)}$ solution on a glass carbon (GC) electrode surface by a hand-casting method. The sensing range of the prepared EMB for phenol in a phosphate buffer solution was 0.005~7.0 mM. The total concentration of phenolic compounds in a commercial red wine was also determined using the EMB.

4급 아민에 의한 이온성 및 3급 아민에 의한 비공유전자쌍의 이중 특성을 갖은 다중벽 탄소나노튜브 지지체를 글리시딜 메티크릴레이트의 방사선 그래프트법을 수행한 후, 아민화 반응을 수행하여 제조하였다. 제조된 이중 다중벽 틴소나노튜브 지지체와 나피온 용액을 혼합 후, 이 코팅용액을 GC 전극 표면에 코팅시킨 후, 여기에 미생물인 Alkaligenes spp.를 고정화하여 미생물 바이오센서를 제작하였다. 이 미생물 센서의 페놀에 대한 검출범위는 0.005~7.0 mM이었다. 이 미생물 바이이오센서를 이용하여 상용의 적포도주에서 페놀함량을 측정하였다.

Keywords

References

  1. G. A. Amin and A. Al-Talhi, World Appl. Sci. J., 2, 62 (2007).
  2. Y. M. Deo and G. M. Gaucher, Biotechnol. Bioeng., 26, 285 (2004).
  3. M. Sauer, D. Porro, D. Mattanovich, and P. Branduardi, Trends Biotechnol., 26, 100 (2008). https://doi.org/10.1016/j.tibtech.2007.11.006
  4. R. L. Jenkins, E. M. Wilson, R. A. Angus, W. M. Howell, M. Kirk, R. Moore, M. Nance, and A. Brown, Environ. Health Perspect., 112, 1508 (2004). https://doi.org/10.1289/ehp.7161
  5. M. Kapoor, L. M. Nair, and R. C. Kuhad, Biochem. Eng. J., 38, 88 (2008). https://doi.org/10.1016/j.bej.2007.06.009
  6. A. N. Reshetilov, J. A. Trotsenko, N. O. Morozova, P. V. Iliasov, and V. V. Ashin, Process Biochem., 36, 1015 (2001). https://doi.org/10.1016/S0032-9592(01)00141-8
  7. I. Karube and K. Nakanishi, IEEE Eng. Med. Biol., 13, 364 (1994). https://doi.org/10.1109/51.294008
  8. J. Svitel, J. Tkac, I. Vostiar, M. Navratil, V. Stefuca, M. Bucko, and P. Gemenier, Biotechnol. Lett., 28, 2003 (2006). https://doi.org/10.1007/s10529-006-9195-3
  9. J. Tkac, V. Stefuca, and P. Gemeiner, Applications of Cell Immobilisation Biotechnology, V. Nedovic and R. Wilaert, Editors, Springer, Netherlands, Part 5, pp. 549-566 (2005).
  10. S. Timur, B. Haghighi, J. Tkac, N. Pazarlıoglu, A. Telefoncu, and L. Gorton, Bioelectrochemistry, 71, 215 (2006).
  11. J. Wang, Electroanalysis, 17, 7 (2005). https://doi.org/10.1002/elan.200403113
  12. S. G. Wang, Q. Zhang, R. Wang, and S. F. Yoon, Biochem. Biophys. Res. Commun., 311, 572 (2003). https://doi.org/10.1016/j.bbrc.2003.10.031
  13. A. Merkoc¸ M. Pumera, X. Llopis, B. Perez, M. Valle, and S. Alegret, Trend Anal. Chem., 24, 826 (2003).
  14. J. Wang, M. Musameh, and Y. Lin, J. Am. Chem. Soc., 125, 2408 (2003). https://doi.org/10.1021/ja028951v
  15. A. Yan, A.V. D. Bussche, A. B. Kane, and R. H. Hurt, Carbon, 45, 2463 (2007). https://doi.org/10.1016/j.carbon.2007.08.035
  16. Z. Wu, W. Feng, Y. Feng, Q. Liu, X. Xu, T. Sekino, A. Fujii, and M. Ozaki, Carbon, 45, 1212 (2007). https://doi.org/10.1016/j.carbon.2007.02.013
  17. A. Star, J. F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E. W. Wong, X. Yang, S. W. Chung, H. Choi, and J. R. H. Angew, Chem. Int. Ed., 40, 1721 (2001). https://doi.org/10.1002/1521-3773(20010504)40:9<1721::AID-ANIE17210>3.0.CO;2-F
  18. S.-H. Choi, S. Y. Park, and Y. C. Nho, Radiat. Phys. Chem., 57, 179 (2000). https://doi.org/10.1016/S0969-806X(99)00347-3
  19. S.-H. Choi and Y. C. Nho, Radiat. Phys. Chem., 58, 157 (2000). https://doi.org/10.1016/S0969-806X(99)00367-9
  20. S.-H. Choi, K.-P. Lee, J.-G. Lee, and Y. C. Nho, J. Appl. Polym. Sci., 77, 500 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000718)77:3<500::AID-APP5>3.0.CO;2-Z
  21. S.-H. Choi and Y. C. Nho, J. M. S.-Pure Appl. Chem., A37, 1053 (2000).
  22. S.-H. Choi, K. P. Lee, and J. G. Lee, Microchem. J., 68, 205 (2001). https://doi.org/10.1016/S0026-265X(00)00154-5
  23. K. P. Lee, H. J. Kang, D. R. Joo, and S.-H. Choi, Radiat. Phys. Chem., 60, 473 (2001). https://doi.org/10.1016/S0969-806X(00)00393-5
  24. M. H. Piao, D. S. Yang, K. R. Yoon, S. Lee, and S. H. Choi, Sensors, 9, 1662 (2009). https://doi.org/10.3390/s90301662
  25. K. I. Kim, H. Y. Kang, J. C. Lee, and S. H. Choi, Sensors, 9, 6701 (2009). https://doi.org/10.3390/s90906701
  26. L. Campanella, A. Bonanni, E. Finotti, and M. Tomasetti, Biosens. Bioelectron., 19, 641 (2004). https://doi.org/10.1016/S0956-5663(03)00276-8
  27. A. Luximon-Ramma, T. Bahorun, A. Crozier, V. Zbarsky, K. P. Datla, and D. T. Dexter, Food Res. Int., 38, 357 (2005). https://doi.org/10.1016/j.foodres.2004.10.005
  28. D. S. Yang, D. J. Jung, and S. H. Choi, Radiat. Phys. Chem., 79, 434 (2010). https://doi.org/10.1016/j.radphyschem.2009.11.006