Thermoresponsive Graft Copolymers of Hyaluronic Acid

히알루론산의 온도감응성 그래프트 공중합체

  • Choi, So-Young (Department of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Lee, Jong-Hwi (Department of Chemical Engineering and Materials Science, Chung-Ang University)
  • 최소영 (중앙대학교 공과대학 화학신소재공학부) ;
  • 이종휘 (중앙대학교 공과대학 화학신소재공학부)
  • Received : 2010.11.09
  • Accepted : 2010.12.18
  • Published : 2011.05.25

Abstract

Stimuli-responsive polymers have been investigated as the materials playing the critical roles in various applications. Thermoresponsive graft copolymers, poly (N-isopropylacrylamide)-g-hyaluronic acid (PNIPAAm-g-HA) and elastin-like peptide-g-hyaluronic acid (ELP-g-HA), were synthesized by coupling carboxylic polymers (PNIPAAm-COOH or ELP) to biocompatible HA through amide linkages. Thermoresponsive behavior was observed in both the copolymers, and the results of turbidity measurement were consistent with the results of rheological examination. Among the two copolymers, the ELP graft copolymer shows less cooperative LCST transition than the PNIPAAm case. As the content of graft chains of PNIPAAm and ELP increases, viscosity increases, and the increase was larger in PNIPAAm case at a graft content. These results shows us that the introduction of grafts provides thermosensitivity to biocompatible HA, whose characteristics can be engineered.

자극감응성 고분자는 다양한 응용에 중요한 역할을 하는 재료로 널리 연구되어오고 있다. 온도감응성을 가지는 히알루론산 공중합체를 카르복실기 고분자와 생체친화성 히알루론산의 아미드 결합을 통하여 연결시켜 합성하였다. 온도감응성 특징은 두 공중합체 모두에 구현되었으며, 탁도 측정과 rheolgical 결과는 일치하였다. 두 공중합체 중 elastin-like peptide(ELP)를 그래프트 사슬에 둔 공중합체의 경우가 N-ispropylacryamide(PNIPAAm) 경우에 비해 보다 완만한 LCST 변화과정을 보여주었다. PNIPAAm과 ELP의 그래프트 부분 함량이 증가함에 따라 점도가 증가하였고, 비슷한 그래프트 함량에서는 PNIPAAm 공중합체의 점도 증가가 컸다. 이러한 결과를 통해 생체친화성의 히알루론산에 그래프트 사슬을 붙임으로써 온도감응성을 부여할 수 있고, 그 특성을 설계할 수 있음을 알 수 있었다.

Keywords

References

  1. J. L. Drury, Biomaterials, 24, 4337 (2003). https://doi.org/10.1016/S0142-9612(03)00340-5
  2. H. Tan, C. M. Ramirez, N. Miljkovic, H. Li, J. P. Rubin, and K. G. Marra, Biomaterials, 30, 6844 (2009). https://doi.org/10.1016/j.biomaterials.2009.08.058
  3. K. Moriyama, T. Ooya, and N. Yui, J. Control. Release, 59, 77 (1999). https://doi.org/10.1016/S0168-3659(98)00183-7
  4. D. I. Ha, S. B. Lee, M. S. Chong, Y. M. Lee, S. Y. Kim, and Y. H. Park, Macromol. Res., 14, 87 (2006). https://doi.org/10.1007/BF03219073
  5. I. L. Hong and Y. J. Kim, Polymer(Korea), 32, 561 (2008).
  6. J. H. Cho, S. H. Kim, K. D. Park, M. C. Jung, W. I. Yang, S. W. Han, J. Y. Noh, and J. W. Lee, Biomaterials, 25, 5743 (2004). https://doi.org/10.1016/j.biomaterials.2004.01.051
  7. S. Ifuku and J. F. Kadla, Biomacromolecules, 9, 3308 (2008). https://doi.org/10.1021/bm800911w
  8. M. K. Yoo, Y. K. Sung, Y. M. Lee, and C. S. Cho, Polymer, 41, 5713 (2000). https://doi.org/10.1016/S0032-3861(99)00779-X
  9. D. Urry, J. Phys. Chem. B, 101, 11007 (1997). https://doi.org/10.1021/jp972167t
  10. X. Z. Shu, Y. Liu, Y. Luo, M. C. Roberts, and G. D. Prestwich, Biomacromolecules, 3, 1304 (2002). https://doi.org/10.1021/bm025603c
  11. S. Ohya, Y. Nakayama, and T. Matsuda, Biomacromolecules, 2, 856 (2001). https://doi.org/10.1021/bm010040a
  12. K. Y. Yuk, Y. M. Choi, J. S. Pack, S. Y. Kim, G. N. Pack, and K. M. Huh, Polymer(Korea), 33, 469 (2009).
  13. H. G. Ho, S. H. Pack, C. H. Pack, and J. H. Lee, Polymer (Korea), 33, 353 (2009).
  14. Z. Zhao, Z. Li, Q. Xia, H. Xi, and Y. Lin, Eur. Polym. J., 44, 1217 (2008). https://doi.org/10.1016/j.eurpolymj.2008.01.014
  15. D. Mortisen, M. Peroglio, M. Alini, and D. Eglin, Biomacromolecules, 11, 1261 (2010). https://doi.org/10.1021/bm100046n
  16. J. P. Chen and T. H. Cheng, Polymer, 50, 107 (2009). https://doi.org/10.1016/j.polymer.2008.10.045
  17. J. Lee, C. Macosko, and D. Urry, Macromolecules, 34, 4114 (2001). https://doi.org/10.1021/ma0015673