Effect of Transesterification on the Characteristics of PET/PEN Blend Flexible Substrate

상호에스테르 교환반응이 폴리(에틸렌 테레프탈레이트)/폴리(에틸렌 나프탈레이트) 블렌드 유연기관 특성에 미치는 영향

  • Kim, Jae-Hyun (Center for Photofunctional Energy Materials, Dept. of Polymer Science and Engineering, Dankook University) ;
  • Kim, Whan-Ki (Center for Photofunctional Energy Materials, Dept. of Polymer Science and Engineering, Dankook University) ;
  • Yum, Ju-Sun (Center for Photofunctional Energy Materials, Dept. of Polymer Science and Engineering, Dankook University) ;
  • Kang, Ho-Jong (Center for Photofunctional Energy Materials, Dept. of Polymer Science and Engineering, Dankook University)
  • 김재현 (광에너지 소재연구센터, 단국대학교 고분자시스템공학과) ;
  • 김환기 (광에너지 소재연구센터, 단국대학교 고분자시스템공학과) ;
  • 염주선 (광에너지 소재연구센터, 단국대학교 고분자시스템공학과) ;
  • 강호종 (광에너지 소재연구센터, 단국대학교 고분자시스템공학과)
  • Received : 2010.10.27
  • Accepted : 2011.01.29
  • Published : 2011.05.25

Abstract

The effect of morphological development in PET/PEN blending on the physical properties of PET/PEN blend film as a flexible substrate was investigated. The two phase morphology was obtained in PET/PEN blends and it caused the improvement of dimensional stability of PET/PEN blend as a flexible substrate. The two phase morphology and crystallinity of PET/PEN blends could be controlled by the transesterification between PET and PEN during the film processing and this macroscopic structural development affected the dimensional stability of PET/PEN blend films. Better dimensional stability was obtained with increasing crystallinity and decreasing the level of transesterification.

PET/PEN 블렌딩에 의하여 발현되는 형태학적 변화가 PET/PEN 블렌드 유연기관 특성에 미치는 영향을 살펴보았다. PET와 PEN의 용융 블렌딩에 따른 two phase 형태학적 변화는 블렌드의 유연기관으로서의 치수안정성을 증가시킴을 알 수 있었다. PET/PEN 필름의 가공조건에 따른 상호에스테르 교환반응은 블렌드의 two phase 형태와 결정화도를 변화시키며 이러한 거시적 형태학적 변화는 유연기관으로서의 PET/PEN 필름의 치수안정성에 영향을 미침을 확인하였다. 결정화도가 높을수록 상호에스테르 교환반응이 낮을수록 PET/PEN 블렌드 필름의 치수안정성이 우수해짐을 알 수 있었다.

Keywords

References

  1. G. P. Crawford, Flexible Flat Panel Display Technology, Wiley, New York, 2005.
  2. J. Lee, D. K. Hwang, J. M. Choi, K. Lee, J. H. Kim, S. Im, J. H. Park, and E. Kim, Appl. Phys. Lett., 87, 023504 (2005). https://doi.org/10.1063/1.1996839
  3. A. Nathan and B. R. Chalamala, Proc. IEEE, 93, 1235 (2005). https://doi.org/10.1109/JPROC.2005.851525
  4. W. A. MacDonald, K. Rollins, R. Eveson, R. A. Rustin, and M. Handa, SID Dig., 34, 264 (2003).
  5. W. A. MacDonald, K. Rollins, D. MacKerron, R. Eveson, R. A. Rustin, K. Rakos, and M. Handa, SID Dig., 35, 420 (2004).
  6. M. Yan, T. W. Kim, A. G. Erlat, M. Pellow, D. F. Foust, J. Liu, M. Schaepkens, C. M. Heller, P. A. McConnelee, T. P. Feist, and A. R. Duggal, Proc. IEEE, 93, 1468 (2005). https://doi.org/10.1109/JPROC.2005.851483
  7. J. Jang and S. H. Han, SID Dig., 36, 103 (2005).
  8. S. Angiolini, M. Avidano, R. Bracco, C. Barlocco, N. D. Young, M. Trainor, and X. Zhao, SID Int. Symp. Dig. Tech. Pap., 34, 1325 (2003).
  9. Y. C. Lin, J. Y. Liand, and W. T. Yen, Appl. Surf. Sci., 254, 3262 (2008). https://doi.org/10.1016/j.apsusc.2007.11.006
  10. G. H. Gelinck, H. E. A. Huitema, M. V. Mil, E. V. Veenendaal, P. J. G. V. Lieshout, and F. J. Touwslager, SID Dig., 36, 6 (2005).
  11. H. Lim, C. M. Bae, Y. K. Kim, C. H. Park, W. J. Cho, and C. S. Ha, Syn. Met., 135, 49 (2003).
  12. Y. Leterrier, Prog. Mater. Sci., 48, 1 (2003). https://doi.org/10.1016/S0079-6425(02)00002-6
  13. Y. S. Kim, Y. C. Park, S. G. Ansari, J. Y. Lee, B. S. Lee, and H. S. Shin, Surf. Coat. Technol., 173, 299 (2003). https://doi.org/10.1016/S0257-8972(03)00717-5
  14. D. I. Kim and S. J. Kim, Surf. Coat. Technol., 176, 23 (2003). https://doi.org/10.1016/S0257-8972(03)00514-0
  15. W. A. MacDonald, J. Mat. Chem., 14, 4 (2004). https://doi.org/10.1039/b310846p
  16. A. M. Kotliar, J. Polym. Sci. Macromol. Rev., 16, 367 (1981). https://doi.org/10.1002/pol.1981.230160106