Coaxial Nozzle Electrospraying of Polymer Solutions: Use of Dispersant Flow

고분자 용액의 동축 이중노즐 전기분무: 분산제 흐름의 사용

  • Kim, Min-Young (Department of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Lee, Jong-Hwi (Department of Chemical Engineering and Materials Science, Chung-Ang University)
  • 김민영 (중앙대학교 화학신소재공학부) ;
  • 이종휘 (중앙대학교 화학신소재공학부)
  • Received : 2011.01.07
  • Accepted : 2011.02.15
  • Published : 2011.05.25

Abstract

In electrospraying of polymer solutions, metal sample collectors are often ineffective in fully removing solvent from sprayed particles and recovering redispersable sprayed particles. Herein, a novel electro spraying system, where sprayed particles were dispersed into laminar flow of dispersant (coagulation liquid), was designed for the nano-encapsulation of protein drugs. Chitosan and polyacrylic acid were used as the encapsulation materials. Aggregation of particles could be prevented by using this new electrospraying system, and unimodal size distribution was observed at an applied voltage between 4~16 kV and a low flow rate. The effects of the applied voltage on mean particle size were not significant on the other hand.

고분자 용액의 전기분무에서 금속 샘플 포집기들은 분무된 입자로부터 흔히 용매를 충분히 제거하거나 재분산이 가능한 분무 입자를 회수하는데 효과적이지 못하다. 단백질 약물의 캡슐화(encapsulation)를 위해 본 연구에서는 입자를 분산매(응고액제)의 층류 안으로 분무하는 새로운 전기분무시스템을 설계하였다. 캡슐화용 물질로 키토산과 폴리아크릴산이 사용되었다. 이 새로운 시스템을 사용하여 입자의 응집을 방지할 수 있었으며, 4~16 kV의 전압과 같은 유속에서 unimodal한 입도분포를 관찰할 수 있었다. 반면에 가한 전압이 평균 입자 크기에 미치는 영향은 크지 않았다.

Keywords

References

  1. A. Lamprecht, N. Ubrich, M. H. Perezm, C. M. Lehr, M. Hoffman, and P. Maincent, Int. J. Pharm., 184, 97 (1999). https://doi.org/10.1016/S0378-5173(99)00107-6
  2. S. D. Putney, Curr. Opin. Chem. Biol., 2, 548 (1998). https://doi.org/10.1016/S1367-5931(98)80133-6
  3. B. G. Amsden and M. F. A. Goosen, J. Control. Release, 43, 183 (1997). https://doi.org/10.1016/S0168-3659(96)01483-6
  4. S. M. Kuo, G. Niu, S. J. Chang, C. H. Kuo, and M. S. Bair, J. Appl. Polym. Sci., 94, 2150 (2004). https://doi.org/10.1002/app.21131
  5. I. G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marques, and A. M. G. Calvo, Science, 295, 1695 (2002). https://doi.org/10.1126/science.1067595
  6. A. Gomez, D. Bingham, L. de Juan, and K. Tang, J. Aerosol Sci., 29, 561 (1998). https://doi.org/10.1016/S0021-8502(97)10031-3
  7. L. Y. Yeo, Z. Gagnon, and H. C. Chang, Biomaterials, 26, 6122 (2005). https://doi.org/10.1016/j.biomaterials.2005.03.033
  8. K. Tang and A. Gomez, J. Aerosol Sci., 25, 1237 (1994). https://doi.org/10.1016/0021-8502(94)90212-7
  9. J. C. Ijseaert, K. B. Geerse, J. M. Marijinissen, and B. Scarlett, J. Aerosol Sci., 30, 825 (1999). https://doi.org/10.1016/S0021-8502(99)80423-6
  10. J. Zie, L. K. Lim, Y. Phua, J. Hua, and C.-H. Wang, J. Colloid Interf. Sci., 302, 103 (2006). https://doi.org/10.1016/j.jcis.2006.06.037
  11. J. Xie, J. C. M. Marijnissen, and C.-H. Wang, Biomaterials, 27, 3321 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.034
  12. M. Cloupeau and B. Prunet-Foch, J. Electrost., 22, 135 (1989). https://doi.org/10.1016/0304-3886(89)90081-8
  13. Y. Xu and M. A. Hanna, Int. J. Pharm., 320, 30 (2006). https://doi.org/10.1016/j.ijpharm.2006.03.046
  14. J. Xie, W. J. Ng, L. Y. Lee, and C.-H. Wang, J. Colloid Interf. Sci., 317, 469 (2008). https://doi.org/10.1016/j.jcis.2007.09.082
  15. D. M. Kim, B. S. Lee, C. H. Park, K. Park. T.-I. Son, M. H. Jeong, and D. K. Han, Polymer(Korea), 34, 178 (2010).
  16. H. Ho, S. Park, C. H. Park, and J. Lee, Polymer(Korea), 33, 353 (2009).
  17. H. Yoon, Y. Park, and G. Kim, Polymer(Korea), 33, 219 (2009).