Study on Radial Force of Helical Structure for Biodegradable Polymer Stents

생분해성 고분자 스텐트를 위한 나선헝 구조의 팽창력 연구

  • Park, Chul-Ho (Biomaterials Center, Korea Institute of Science and Technology) ;
  • Park, Ga-Ram (Biomaterials Center, Korea Institute of Science and Technology) ;
  • Choi, Ji-Yeon (Biomaterials Center, Korea Institute of Science and Technology) ;
  • Park, Kwi-Deok (Biomaterials Center, Korea Institute of Science and Technology) ;
  • Han, Dong-Keun (Biomaterials Center, Korea Institute of Science and Technology)
  • 박철호 (한국과학기술연구원 바이오소재센터) ;
  • 박가람 (한국과학기술연구원 바이오소재센터) ;
  • 최지연 (한국과학기술연구원 바이오소재센터) ;
  • 박귀덕 (한국과학기술연구원 바이오소재센터) ;
  • 한동근 (한국과학기술연구원 바이오소재센터)
  • Received : 2011.01.10
  • Accepted : 2011.02.10
  • Published : 2011.05.25

Abstract

Biodegradable polymeric stents have been issued to replace the existing non-degradable metal stents due to relatively improved biocompatibility and low side effects. Fundamentally, all the stents must possess the desired mechanism strength, especially, compression or radial force to maintain the diameters of expanded vessels. Therefore, this study suggests a helical structure and focused on the relation between the lateral compression and structural factors, Unlike a cylindrical model, the radial force of the helical model is proportional to the thickness and the length to the power of one, whereas the diameter to the power of 1.6. The function obtained from these results might provide the fundamental information to design and prepare the stem for clinical applications.

생분해성 고분자 스텐트는 상대적으로 향상된 생체적합성 및 낮은 부작용으로 기존의 비분해성 금속 스텐트를 대체하기 위해 이슈가 되고 있다. 기본적으로 오든 스텐트들은 확장된 혈관의 직경을 유지하기 위해 요구되는 기계적 강도, 특히 압축력 또는 팽창력을 가져야만 한다. 따라서 본 연구는 나선형 구조테를 제안하였으며, 측면 압축력과 구조적 인자들과의 관련성에 집중하였다. 실린더의 구조체와 달리, 나선형 구조체의 팽창력은 두께와 길이에 1차승으로 비례하고, 직경은 1.6지승의 반비례 관계를 가지고 있었다. 하지만 간극 사이의 거리는 하중과 관련성을 보이지 않았다. 본 연구에서 얻어진 이러한 함수는 임상 적용 스텐트를 설계하고 제조하는데 기초적인 정보를 제공할 수 있다.

Keywords

References

  1. A. Kastrati, A. Schomig, J. Dirschinger, J. Mehilli, N. von Welser, J. Pache, H. Schuhlen, T. Schilling, C. Schmitt, and F. J. Neumann, Circulation, 101, 2478 (2000). https://doi.org/10.1161/01.CIR.101.21.2478
  2. A. J. Duerinckx, D. Atkinson, R. Hurwitz, J. Mintorovitch, and W. Whitney, Am. J. Roentgenol., 165, 662 (1995). https://doi.org/10.2214/ajr.165.3.7645491
  3. D. L. Fischman, M. B. Leon, D. S. Baim, R. A. Schatz, M. P. Savage, I. Penn, K. Detre, L. Veltri, D. Ricci, M. Nobuyoshi, M. Cleman, R. Heuser, D. Almond, P. S. Teirstein, R. D. Fish, A. Colombo, J. Brinker, J. Moses, A. Shaknovich, J. Hirshfeld, S. Bailey, S. Ellis, R. Rake, and S. Goldberg, NEJM, 331, 496 (1994). https://doi.org/10.1056/NEJM199408253310802
  4. P. W. Serruys, B. van Hout, H. Bonnier, V. Legr, E. Garcia, C. Macaya, E. Sousa, W. van der Giessen, A. Colombo, R. Seabra-Gomes, F. Kiemeneij, P. Ruygrok, J. Ormiston, H. Emanuelsson, J. Fajadet, M. Haude, S. Klugmann, M. A. Morel, and B. S. Grp, Lancet, 352, 673 (1998). https://doi.org/10.1016/S0140-6736(97)11128-X
  5. R. Rieu, P. Barragan, C. Masson, J. Fuseri, V. Garitey, M. Silvestri, and P. Roquebert, Catheter. Cardiovasc. Interv., 46, 380 (1999). https://doi.org/10.1002/(SICI)1522-726X(199903)46:3<380::AID-CCD27>3.0.CO;2-J
  6. S. W. Park, C. W. Lee, M. K. Hong, J. J. Kim, D. Y. Nah, G. Y. Cho, and S. J. Park, Circulation, 100, 138 (1999). https://doi.org/10.1161/01.CIR.100.25.e138
  7. G. W. Stone and H. D. Aronow, Mayo Clinic Proceedings, 81, 641 (2006). https://doi.org/10.4065/81.5.641
  8. P. Wenaweser, C. Rey, F. R. Eberli, M. Togni, D. Tuller, S. Locher, A. Remondino, C. Seiler, O. M. Hess, B. Meier, and S. Windecker, Eur. Heart J., 26, 1180 (2005). https://doi.org/10.1093/eurheartj/ehi135
  9. A. T. L. Ong, J. Aoki, M. Kutryk, and P. W. Serruys, Archives Des Maladies Du Coeur Et Des Vaisseaux, 98, 123 (2005).
  10. A. T. L. Ong, A. Hoye, J. Aoki, C. A. G. van Mieghem, G. A. R. Granillo, K. Sonnenschein, E. Regar, E. P. McFadden, G. Sianos, W. J. van der Giessen, P. P. T. de Jaegere, P. de Feyter, R. T. van Domburg, and P. W. Serruys, J. Am. Coll. Cardiol., 45, 947 (2005). https://doi.org/10.1016/j.jacc.2004.09.079
  11. L. S. D. de la Ilera, S. Ballesteros, J. Nevado, M. Fernandez, M. Villa, A. Sanchez, G. Retegui, D. Garcia, and A. Martinez, Am. Heart J., 154 (2007).
  12. A. H. Gershlick and G. Richardson, BMJ, 333, 1233 (2006). https://doi.org/10.1136/bmj.39058.554884.BE
  13. S. E. Kim, B. S. Lee, J. H. Kim, K. Park, and D. K. Han, Polymer(Korea), 34, 172 (2010).
  14. S. S. Venkatraman, L. P. Tan, J. F. D. Joso, Y. C. F. Boey, and X. Wang, Biomaterials, 27, 1573 (2006). https://doi.org/10.1016/j.biomaterials.2005.09.002
  15. H. Tamai, K. Igaki, E. Kyo, K. Kosuga, A. Kawashima, S. Matsui, H. Komori, T. Tsuji, S. Motohara, and H. Uehata, Circulation, 102, 399 (2000). https://doi.org/10.1161/01.CIR.102.4.399
  16. S. B. Cho, C. H. Park, K. Park, D. J. Chung, and D. K. Han, Polymer(Korea), 33, 620 (2009).
  17. M. C. Frost, M. M. Reynolds, and M. E. Meyerhoff, Biomaterials, 26, 1685 (2005). https://doi.org/10.1016/j.biomaterials.2004.06.006
  18. D. R. Holmes, Am. J. Cardiol., 91, 50a (2003). https://doi.org/10.1016/S0002-9149(02)03150-8
  19. M.-C. Chen, H.-W. Tsai, Y. Chang, W.-Y. Lai, F.-L. Mi, C.-T. Liu, H.-S. Wong, and H.-W. Sung, Biomacromolecules, 8, 2774 (2007). https://doi.org/10.1021/bm7004615
  20. D. M. Kim, B. S. Lee, C. H. Park, K. Park, T. I. Son, M. H. Jeong, and D. K. Han, Polymer(Korea), 34, 178 (2010).
  21. M. Nemat-Alla, Int. J. Mech. Sci., 45, 605 (2003). https://doi.org/10.1016/S0020-7403(03)00115-2
  22. T. Y. Reddy and S. R. Reid, Nucl. Eng. Des., 52, 257 (1979). https://doi.org/10.1016/0029-5493(79)90055-4