DOI QR코드

DOI QR Code

이산화탄소 지중저장 조건에서 초임계이산화탄소와 염수 반응에 의한 Ca-사장석, 각섬석, 감람석의 지화학적 변화 연구

Study for the Geochemical Reaction of Ca-feldspar, Amphibole and Olivine with Supercritical $CO_2$ and Brine on the $CO_2$ Sequestration Condition

  • 강현민 (부경대학교 지구환경과학과) ;
  • 박민호 (부경대학교 지구환경과학과) ;
  • 박상희 (부경대학교 지구환경과학과) ;
  • 이민희 (부경대학교 지구환경과학과) ;
  • 왕수균 (부경대학교 에너지자원공학과)
  • Kang, Hyun-Min (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Park, Min-Ho (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Park, Sang-Hee (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Lee, Min-Hee (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Wang, Soo-Kyun (Department of Energy Resources Engineering, Pukyong National University)
  • 투고 : 2011.01.07
  • 심사 : 2011.04.20
  • 발행 : 2011.04.28

초록

이산화탄소 지중저장지에서 초임계이산화탄소(supercritical $CO_2$)-광물-염수 반응에 의한 광물의 지화학적 변화를 규명하는 실내 실험을 실시하였다. 초임계$CO_2$로 존재하는 지중저장 온도/압력조건(100 bar와 $50^{\circ}C$)을 재현한 스테인레스 셀(용량 110 ml) 내부에 100 ml의 염수를 주입하였다. 염수는 부산 해안가 지하 800 m 깊이 지하수 채수정에서 채수한 염수를 사용하였으며, 실험 대상 광물로는 $CO_2$와 반응이 잘 일어나는 것으로 보고된 Ca, Fe, Mg 성분이 풍부한 Ca-사장석, 각섬석, 감람석 시료를 사용하였다. 각 광물 시료를 슬랩($10\;mm{\times}10\;mm$)으로 제작하여 표면을 폴리싱한 후 염수가 담긴 고압셀 내부 하부에 고정시키고 초임계 $CO_2$를 주입한 후 30일 동안 반응시켰다. 실험 전 광물 표면을 반사현미경과 SPM을 사용하여 영상화하였으며, 표면 당 3 지점을 임의로 선택하여 주변 면적 ($20\;{\mu}m{\times}20\;{\mu}m$)의 표면거칠기값(SRV: surface roughness value)을 구하였다. 반응 후 일정 시간 간격으로 고압셀 내 광물 표면에 대하여 SPM 분석과 표면거칠기값 계산을 반복하여 초임계 $CO_2$-광물-염수 반응에 의해 변화된 광물 표변을 정량화 하였으며, 염수에 용해된 양이온 종류와 농도를 분석하고, 광물 표면에 형성된 2차 광물 분석을 위해 SEM/EDS 분석을 실시하였다. Ca-사장석의 경우 초임계 $CO_2$가 용해된 염수와 반응하여 광물 표면의 평균 SRV는 30일 동안 2.77 nm에서 20.87 nm로 증가하여 지화학반응에 의하여 상당한 광물 표면 풍화가 발생하였음을 알 수 있었다. 각성석과 감람석의 경우에는 평균 SRV가 2.54 nm와 0.77 nm에서 각각 8.31 nm와 11.03 nm로 증가하였다. 반응에 의해 염수에 용해된 이온은 Ca-사장석의 경우 $Ca^{2+}$, $Na^+$, $Fe^{2+}$, $Si^{4+}$, $K^+$, $Mg^{2+}$ 순이었으며, 각섬석의 경우에는 $Si^{4+}$, $Ca^{2+}$, $Fe^{2+}$, $Mg^{2+}$ 순으로 나타났다. 각섬석과 감람석 광물 표면에는 만상에 의해 철(또는 마그네슘)-(수)산화물이 2차 광물로 형성됨을 SEM/EDS 분석결과로 알 수 있었다. 실험 결과로부터 $Ca^{2+}$, $Fe^{2+}$, $Mg^{2+}$이 풍부한 광물의 경우 $CO_2$ 지중저장 시 초임계 $CO_2$-광물-염수 반응에 의해 짧은 시간 내에 심한 풍화작용을 일으켜 광물의 물성 변화를 일으킬 수 있음을 입증하였다.

The lab scale experiments to investigate the geochemical reaction among supercritical $CO_2$-mineral-brine which occurs at $CO_2$ sequestration sites were performed. High pressurized cell system (l00 bar and $50^{\circ}C$) was designed to create supercritical $CO_2$ in the cell, simulating the sub-surface $CO_2$ storage site. From the high pressurized cell experiment, the surface changes of Ca-feldspar, amphibole (tremolite) and olivine, resulted from the supercritical $CO_2$-mineral-brine reaction, were observed and the dissolution of minerals into the brine was also investigated. The mineral slabs were polished and three locations on the surface were randomly selected for the image analysis of SPM and the surface roughness value (SRV) of those locations were calculated to quantify the change of mineral surface for 30 days. At a certain time interval, SPM images and SRVs of the same mineral surface were acquired. The secondary minerals precipitated on the mineral surfaces were also analyzed on SEM/EDS after the experiment. From the experiments, the average SRV of Ca-feldspar increased from 2.77 nm to 20.87 nm for 30 days, suggesting that the dissolution of Ca-feldspar occurs in active when the feldspars contact with supercritical $CO_2$ and brine. For the amphibole, the average SRV increased from 2.54 nm to 8.31 nm and for the olivine from 0.77 nm to 11.03 run. For the Ca-feldspar, $Ca^{2+}$, $Na^+$, $Fe^{2+}$, $Si^{4+}$, $K^+$ and $Mg^{2+}$ were dissolved in the highest order and $Si^{4+}$, $Ca^{2+}$, $Fe^{2+}$ and $Mg^{2+}$ for the amphibole. Fe (or Mg) - oxides were precipitated as the secondary minerals on the surfaces of amphibole and olivine after 30 days reaction. Results suggested that $Ca^{2+}$, $Fe^{2+}$ and $Mg^{2+}$ rich minerals would be significantly weathered when it contacts with the supercritical $CO_2$ and brine at $CO_2$ sequestration sites.

키워드

참고문헌

  1. Akimoto, K., Kotsubo, H., Asami, T., Li, X., Uno, M.,Tomoda, T. and Ohsumi, T. (2004), Evaluation of carbondioxide sequestration in Japan with a mathematical model, Energy, v.29, p.1537-1549. https://doi.org/10.1016/j.energy.2004.03.058
  2. Bachu, S. (2000), Sequestration of $CO_2$ in geological media: criteria and approach for site selection in response of climate change, Energy Conversion and Management, v.41, p.953-970. https://doi.org/10.1016/S0196-8904(99)00149-1
  3. Bachu, S., Gunter, W.D. and Perkins, E.H. (1995), Aquifer disposal of $CO_2$-hydrodynamic and mineral trapping, Energy Conversion and Management, v.35, p.269-279.
  4. Chae, G., Yun, S., Choi, B., Kim, K. and Shevalier, M. (2005), Geochemical Concept and Technical Development of Geological $CO_2$ sequestration for Reduction of$CO_2$, Econ. Environ. Geol., v.38(1), p.1-22
  5. Choi, B., Chae, G., Kim, K. and Yun, S. (2009), Reactive transport modeling on the behavior of $CO_2$ and $SO_2$ injected into deep saline aquifer. J. Geologic. Soc. Kor., v.45, p.473-484.
  6. Emberley, S., Hutcheon, I., Shevalier, M., Durocher, K., Gunter, W.D. and Perkins, E.H. (2004), Geochemical monitoring of fluid-rock interaction at CO2 storage at the Weyburn CO2 -injection enhanced oil recovery site, Saskatchewan, Canada, Energy, v.29, p.1393- 1401.
  7. Faure, G., (1998), Principles and applications of geochemistry: A comprehensive textbook for geology students 2nd edition, Prentice Hall, 600p.
  8. Gunter, W.D., Wiwchar, B. and Perkins, E.H. (1997) Aquifer disposal of CO2 rich greenhouse gases: extension of the time scale of experiment for CO2 sequestering reactions by geochemical modeling. Mineralogy and Petrology, v.59, p.121-140. https://doi.org/10.1007/BF01163065
  9. Hitchen, B. (1996), Aquifer disposal of carbon dioxide, hydrologic and mineral trapping, Geoscience Publishing Sherwood Park, Alberta, Canada.
  10. Holloway, S. (1997), An overview of the underground disposal of carbon dioxide, Energy Conversion and Management, v.38, p.193-198. https://doi.org/10.1016/S0196-8904(96)00268-3
  11. IPCC, (2007), climate change 2007: The physical science basis. Fourth assessment report, IPCC Secretariat, Genva, Switzerland.
  12. Kim, J., Kim, J. and Wang, S. (2009), Numerical simulation of impacts of mineralogical compositions on efficiency and safety of geologic storage of carbon dioxide in deep sandstone aquifers. J. Geologic. Soc. Kor., v.45, p.493-516.
  13. Kim, T., Kim, J. and Yum, B. (2009), Current status of CO2 injection system for geologic sequestration in foreign countries. J. Geologic. Soc. Kor., v.45, p.557- 568.
  14. Lackner, K.S., Butt, D.P. and Wendt, C.H. (1997) Magnesite disposal of carbon dioxide. In: Proceedings of the 22nd International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, Florida, p.419-430.
  15. Lee, Y., Park, Y., Kwon, S. and Sung, W. (2008), The feasibility study for CO2 sequestration into deep saline aquifer at Gorae-V structure in Korea. Journal of Korean Society for Geosystem Engineering, v.45, p.381-393.
  16. Ortoleva, P.J., Dove, P. and Richter, F. (1998), Geochemical perspective on CO2 sequestration, U.S. Department of Energy Workshop on 'Terrestrial Sequestration of CO2 -An assessment of Research Needs', Gaithersburg, MD, May 10-12.
  17. O'Connor, W.K., Dahlin, D.C., Nilsen, D.N., Walters, R.P.and Turner, P.C. (2000) Carbon dioxide sequestration by direct mineral carbonation with carbonic acid. In: Proceedings of the 25th International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, Florida.
  18. PIPER, C. S. 1944. Soil and plant analysis. Interscience Pub. Co., New York. 368p.
  19. Son, H., Kwon, S. and Sung, W. (2006), Analytical approach of CO2 sequestration in a deep confined aquifer. Journal of Korean Society for Geosystem Engineering, v.43, p.275-281.
  20. Wang S. (2009), A proposal for regulatiog the geological sequestration of carbon dioxide. J. Geologic. Soc. Kor., v.45(5), p.569-577.
  21. Wolery, T.J. (1992), EQ3/6: Software package for geochemical modeling of aqueous systems: Package overview and installation guide (version 7.0). Lawrence Livermore National Laboratory Report UCRL-MA- 110662 PT I, Livermore, California.
  22. Xu, T., Apps, J.A. and Pruess, K. (2004), Numerical simulation of CO2 disposal by mineral trapping in deep aquifers. Applied Geochemistry, v.19, p.917-936. https://doi.org/10.1016/j.apgeochem.2003.11.003

피인용 문헌

  1. Study on the Dissolution of Sandstones in Gyeongsang Basin and the Calculation of Their Dissolution Coefficients under CO2Injection Condition vol.45, pp.6, 2012, https://doi.org/10.9719/EEG.2012.45.6.661