Evaluation of Elastic Properties and Analysis of Contact Resonance Frequency of Cantilever for Ultrasonic AFM

초음파원자현미경 캔틸레버의 동특성 해석과 탄성특성 평가

  • 박태성 (서울과학기술대학교 기계공학과) ;
  • 곽동열 (서울과학기술대학교 기계공학과) ;
  • 박익근 (서울과학기술대학교 기계공학과) ;
  • 김정석 (한양대학교 자동차공학과) ;
  • 장경영 (한양대학교 기계공학부)
  • Received : 2011.02.14
  • Accepted : 2011.04.07
  • Published : 2011.04.30

Abstract

Nondestructive surface imaging of elastic characteristic and mechanical property has been studied on nanoscale surface with ultrasonic AFM. Resonance frequency variation of cantilever is theoretically analyzed with respect to contact mechanics as well as experimentally measured. The contact resonance frequency is calculated theoretically using the spring-mass and Herzian model in accordance with the resonance frequency of UAFM cantilever measured experimentally. Consequently, the topography and amplitude images could be obtained successfully and the elastic characteristic at the nanoscale surface was evaluated qualitatively by amplitude signals.

본 연구에서는 초음파원자현미경을 이용하여 비파괴적인 표면탄성이미지 분석과 나노표면에서의 기계적 물성 평가를 연구하였다. 이를 위해 접촉역학 특성에 따른 캔틸레버의 공진주파수 변화를 이론적으로 해석하고 실험적으로 측정하였다. 스프링-질량 모델과 Herzian 이론을 이용하여 계산한 이론적인 접촉공천주파수는 초음파원자현미경 캔틸레버의 실험적인 접촉 공진주파수의 변화와 매우 유사하였다. 결과적으로, 초음파원자현미경의 표면 높이 이미지와 진폭이미지를 성공적으로 얻을 수 있었고 진폭신호를 통하여 시료표면에서의 탄성특성을 정성적으로 평가하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. G. Binnig, C. F. Quate and Ch. Gerber, "Atomic force microscope," Phys. Rev. Lett., Vol. 56, pp. 930-933 (1986) https://doi.org/10.1103/PhysRevLett.56.930
  2. G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, "Tunneling through a controllable vacuum gap," Appl Phys. Lett., Vol. 40, pp. 178-180 (1982) https://doi.org/10.1063/1.92999
  3. F. Ohnesorge and G. Binnig, "True atomic resolution by atomic force microscopy through repulsive and attractive forces," Science, Vol. 260, pp. 1451-1456 (1993) https://doi.org/10.1126/science.260.5113.1451
  4. A. A. Tseng, A. Notargiacomo and T. P Chen, "Nanofabrication by scanning probe microscope lithography: A review," J. Vac. Set. Technol. B, Vol. 23, pp. 877-894 (2005) https://doi.org/10.1116/1.1926293
  5. E. Chilla, T. Hesjedahl and H. J. Frohlich, "Nanoscale determination of phase velocity by scanning acoustic force microscopy," Phys. Rev. B, Vol. 55, pp. 15852-15855 (1997) https://doi.org/10.1103/PhysRevB.55.15852
  6. U. Rabe and W. Arnold, "Acoustic microscopy by atomic force microscopy," Appl. Phys. Lett., Vol. 64, pp. 1493-1495 (1994) https://doi.org/10.1063/1.111869
  7. K. Yamanaka and S. Nakano, "Ultrasonic atomic force microscope with overtone excitation of cantilever," Jpn. J. Appl. Phys., Vol. 35, pp. 3787-3792 (1996) https://doi.org/10.1143/JJAP.35.3787
  8. T. Tsuji and K. Yamanaka, "Measurement method of acoustic property on nanoscale: Improvement of precision of ultrasonic atomic force microscopy and application for measurement of material property," Japan Society of Applied Physics, Vol. 62, pp. 121-127 (2006)
  9. S. Hirsekom, U. Rabe and W. Arnold, "Ultrasonic radiation in dynamic force microsopy," Applied Physics. A, Vol. 72 pp. 87-92 (2001) https://doi.org/10.1007/s003390100730
  10. W. Rohrbeck and E. Chilla, "Detection of surface acoustic waves by scanning force microscopy," Phys. Stat. Sol. (a), Vol. 131, pp. 69-71 (1992) https://doi.org/10.1002/pssa.2211310111
  11. M. Salmeron, G. Nuebauer, A. Folch, M. Tomitori, D. F. Ogletree and P. Sautet, "Viscoelastic and electrical properties of self-assembled monolayers on gold (111) films," Langmuir, Vol. 9, pp. 3600-3611 (1993) https://doi.org/10.1021/la00036a041
  12. T. S. Park, D. R. Kwak, I. K. Park and C. S. Kim "Vibro-contact analysis of ultrasonic atomic force microscopy tip it's application to nano surface," Journal of the Korean Society for Non-destructive Testing, Vol. 30, No. 2, pp. 132-138 (2010)