DOI QR코드

DOI QR Code

An Estimation of Concentration of Asian Dust (PM10) Using WRF-SMOKE-CMAQ (MADRID) During Springtime in the Korean Peninsula

WRF-SMOKE-CMAQ(MADRID)을 이용한 한반도 봄철 황사(PM10)의 농도 추정

  • Moon, Yun-Seob (Department of Environmental Education, Korea National University of Education) ;
  • Lim, Yun-Kyu (Department of Environmental Education, Korea National University of Education) ;
  • Lee, Kang-Yeol (Department of Environmental Education, Korea National University of Education)
  • 문윤섭 (한국교원대학교 환경교육과) ;
  • 임윤규 (한국교원대학교 환경교육과) ;
  • 이강열 (한국교원대학교 환경교육과)
  • Received : 2011.05.23
  • Accepted : 2011.06.27
  • Published : 2011.06.30

Abstract

In this study a modeling system consisting of Weather Research and Forecasting (WRF), Sparse Matrix Operator Kernel Emissions (SMOKE), the Community Multiscale Air Quality (CMAQ) model, and the CMAQ-Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) model has been applied to estimate enhancements of $PM_{10}$ during Asian dust events in Korea. In particular, 5 experimental formulas were applied to the WRF-SMOKE-CMAQ (MADRID) model to estimate Asian dust emissions from source locations for major Asian dust events in China and Mongolia: the US Environmental Protection Agency (EPA) model, the Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model, and the Dust Entrainment and Deposition (DEAD) model, as well as formulas by Park and In (2003), and Wang et al. (2000). According to the weather map, backward trajectory and satellite image analyses, Asian dust is generated by a strong downwind associated with the upper trough from a stagnation wave due to development of the upper jet stream, and transport of Asian dust to Korea shows up behind a surface front related to the cut-off low (known as comma type cloud) in satellite images. In the WRF-SMOKE-CMAQ modeling to estimate the PM10 concentration, Wang et al.'s experimental formula was depicted well in the temporal and spatial distribution of Asian dusts, and the GOCART model was low in mean bias errors and root mean square errors. Also, in the vertical profile analysis of Asian dusts using Wang et al's experimental formula, strong Asian dust with a concentration of more than $800\;{\mu}g/m^3$ for the period of March 31 to April 1, 2007 was transported under the boundary layer (about 1 km high), and weak Asian dust with a concentration of less than $400\;{\mu}g/m^3$ for the period of 16-17 March 2009 was transported above the boundary layer (about 1-3 km high). Furthermore, the difference between the CMAQ model and the CMAQ-MADRID model for the period of March 31 to April 1, 2007, in terms of PM10 concentration, was seen to be large in the East Asia area: the CMAQ-MADRID model showed the concentration to be about $25\;{\mu}g/m^3$ higher than the CMAQ model. In addition, the $PM_{10}$ concentration removed by the cloud liquid phase mechanism within the CMAQ-MADRID model was shown in the maximum $15\;{\mu}g/m^3$ in the Eastern Asia area.

본 연구에서는 한반도 황사 사례 동안 WRF 기상모델과 SMOKE 배출량모델, CMAQ 및 CMAQ-MADRID 대기질 모델을 이용하여 다양한 황사 발생량 경험식에 대한 $PM_{10}$의 농도를 추정하였다. 특별히 Wang et al.(2000), US EPA 모델, Park and In(2003), GOCART 모델, DEAD 모델의 5가지 황사 발생 경험식이 중국과 몽골 등의 황사 발생량을 추정하기 위해 WRF-SMOKE-CMAQ(MADRID) 모델에 적용되었다. 일기도, 후방궤적 및 위성이미지 분석에 따르면 한반도로의 황사 수송은 절리저기압(위성에서 콤마형 구름)과 관련된 지상 전선의 뒤쪽에서, 그리고 상층 제트류의 발달에 기인한 파의 정체현상과 함께 상층 골에서의 풍속이 하층으로 전이되는 풍하 바람에 의해 생성되었다. 그리고 WRF-SMOKE-CMAQ 모델링 결과, 황사의 시 공간적 분포에 있어서는 Wang et al.(2000)의 경험식이, 평균 편의 및 평균 제곱근 오차에서의 정확도 부분에서는 GOCART 모델의 경험식이 관측값을 보다 잘 모사하는 것으로 나타났다. 또한 Wang et al.의 경험식을 이용한 황사의 연직분포 분석 결과에서 강한 황사 사례(2007년 3월 31에서 4월 1일 $800\;{\mu}g/m^3$ 이상)의 경우는 황사 수송이 한반도 상공 대기 경계층 내를 통과하였기 때문으로, 약한 황사 사례(2009년 3월 16일과 17에 $400\;{\mu}g/m^3$ 이하)의 경우는 황사 수송이 경계층 위를 통과하였기 때문으로 나타났다. 또한 CMAQ 모델과 CAMQ-MADRID 모델에서의 미세먼지($PM_{10}$) 민감도 분석 결과에서는 CMAQ-MADRID 모델이 CMAQ 모델에 비해 한반도를 포함한 동아시아 지역에서 최대 $25\;{\mu}g/m^3$ 정도가 높게 모사되었고, 모델 내 구름 액상과정에 의해서는 최대 $15\;{\mu}g/m^3$ 정도가 제거되는 것으로 나타났다.

Keywords

References

  1. 김유근, 문윤섭, 오인보, 송상근, 배주현, 임윤규, 2001, 봄철 황사현상에 대한 기상장 분석 및 수치모의. 한국기상학회 대기지, 11, 452-453.
  2. 김유근, 송상근, 문윤섭, 정주희, 2003, 동북아시아 황사발생시 배출량 산정방법 연구 및 수치모의. 한국대기환경학회 2003 춘계학술대회 논문집, 177-178.
  3. 김학성, 정용승, 2009, 2005년 동아시아 지역에서 발생한 모래폭풍과 먼지침전(황사)의 관측. 한국지구과학회지, 30, 196-209. https://doi.org/10.5467/JKESS.2009.30.2.196
  4. 김학성, 윤마병, 손정주, 2010, 2008년 동아시아 대륙으로부터 기원이 다른 먼지와 인위적 오염 입자의 광역적 이동 사례에 대한 분석. 한국지구과학회지, 31, 600-607. https://doi.org/10.5467/JKESS.2010.31.6.600
  5. 문윤섭, 이승환, 2009, 경험식을 이용한 발원지 황사의 시간별 발생량 추정. 한국대기환경학회지, 25, 539-549. https://doi.org/10.5572/KOSAE.2009.25.6.539
  6. 손혜영, 김철희, 2009, 황사 발원지 기후자료의 시계열 특성과 부산지역 먼지 농도의 연관성 분석. 한국지구과학회지, 30, 734-743. https://doi.org/10.5467/JKESS.2009.30.6.734
  7. 송상근, 김유근, 2003, 2002년 11월 황사의 기상학적 특성 및 강도추정. 한국대기환경학회 2003 춘계학술대회 논문집, 119-120.
  8. 심재면, 박순웅, 장림석, 이은희, 정재인, 2004, 황사와 인위적 오염물질의 수치모의. 한국기상학회 2004년도 가을 학술대회 논문집, 230-231.
  9. 이순환, 곽은영, 류찬수, 문윤섭, 2004, 황사의 확산예측을 위한 기상정보의 시간해상도에 관한 수치모의. 한국환경과학회지, 13, 891-902.
  10. 이은희, 박순웅, 2004, ADAM 모델을 이용한 2004년 봄철 황사의 수치모의. 한국기상학회 2004년도 가을 학술대회 논문집, 222-223.
  11. Borchi, F., Oikonomou, E., and Marenco, A., 2005, Exratropical case study of stratosphere-troposphere exchange using multivariate analyses from mozaic aircraft data. Atmospheric Environment, 39, 6537-6549. https://doi.org/10.1016/j.atmosenv.2005.07.019
  12. Christensen, J.H., 1997, The Danish Eulerian hemispheric model a three-dimensional air pollution model used for the Arctic. Atmospheric Environment, 31, 4169-4191. https://doi.org/10.1016/S1352-2310(97)00264-1
  13. Curci, G., Beekmann, M., and Vautard, R., 2007, Assessment of impacts to the air quality. NatAir Final Project Meeting. Brussels, 25-26.
  14. Gillette, D.A. and Passi, R., 1988, Modeling dust emission caused by wind erosion. Journal of Geophysical Research, 93, 14233-14242. https://doi.org/10.1029/JD093iD11p14233
  15. Ginoux P., Chin, M., Tagen., I., Prospero., J.M., Holben., B., Dubovik, O., and Lin, S., 2001, Sources and distributions of dust aerosols simulated with the GOCART model. Journal of Geophysical Research, 106, 20255-20273. https://doi.org/10.1029/2000JD000053
  16. Ginoux, P., Prospero, J., Torres, O., and Chin, M., 2004, Long-term simulation of global dust distribution with the GOCART model: Correlation with North Atlantic Oscillation. Environmental Modeling Software, 19, 113-128. https://doi.org/10.1016/S1364-8152(03)00114-2
  17. Gong, S.L., Zhang, X.Y., Zhao, T.L., McKendry, I.G., Jaffe, D.A., and Lu, N.M., 2003, Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia; Model simulation and validation. Journal of Geophysical Research, 108, 4262, doi:10.1029/2002JD002633.
  18. Hayasaki, M., Sugata, S., and Tanaka, H.L., 2006, Interannual variation of cold frontal activity in spring in Mongolia. Journal of Meteorological Society of Japan, 84, 463-475. https://doi.org/10.2151/jmsj.84.463
  19. In, H.-J. and Park, S.-U., 2002, A simulation of long-range transport of yellow sand observed in Aprilil 1998 in Korea. Atmospheric Environment, 36, 4173-4187. https://doi.org/10.1016/S1352-2310(02)00361-8
  20. In, H.-J. and Park, S.-U., 2003a, Estimation of dust emission amount for a dust storm event occurred in April 1998 in China. Water, Air, and Soil pollution, 148, 201-221. https://doi.org/10.1023/A:1025400921908
  21. In, H.-J. and Park, S.-U., 2003b, The soil particle size dependent emission parameterization for an Asian dust observed in Korea in April 2002. Atmospheric Environment, 37, 4625-4636. https://doi.org/10.1016/j.atmosenv.2003.07.009
  22. Kim, Y.K., Lee, H.W., Moon, Y.S., and Song, S.K., 2001, Long-range transport mechanisms of Asian dust associated with the synoptic weather system. Journal of Korean Environmental Sciences, 10, 197-206.
  23. Kim, Y.K. and Song, S.K., 2003, Synoptic analysis and transport during asian dust events observed over Korea. Journal of the Korean Meteorological Society, 40, 273-291.
  24. Korcz, M., Fuda1a, J., and Klis, C., 2009, Estimation of wind blown dust emissions in Europe and its vicinity. Atmospheric Environment, 43, 1410-1420. https://doi.org/10.1016/j.atmosenv.2008.05.027
  25. Kurosaki, Y. and Mikami, M., 2003, Recent frequent dust events and their relation to surface wind in East Asia. Geophysical Research Letters, 30, 1736, doi:10.1029/2003GL017261.
  26. Lim, J.Y. and Chun, Y., 2006, The characteristics of Asian dust events in Northeast Asia during the springtime from 1993 to 2004. Global and Planetary Change, 52, 231-247. https://doi.org/10.1016/j.gloplacha.2006.02.010
  27. Liu, M., Westphal, D.L., Wang, S., Shimizu, A., Sugimoto, N., Zhou, J., and Chen, Y., 2003, A high-resolution numerical study of the Asian dust storms on April 2001. Journal of Geophysical Research, 108, 8653, doi:10.1029/2002JD003178.
  28. Marticorena, B. and Bergametti, G., 1995, Modeling the atmospheric dust cycle: 1-design of a soil derived dust production scheme. Journal of Geophysical Research, 100, 16415-16430. https://doi.org/10.1029/95JD00690
  29. Marticorena, B., Bergametti, G., Gillette, D., and Belnap, J., 1997, Factors controlling threshold friction velocity in semiarid and arid areas of the United States. Journal of Geophysical Research, 102, 23277-23287. https://doi.org/10.1029/97JD01303
  30. Martin, R.V., Jacob, D.J., Yantosca, R.M., Chin, M., and Ginoux, P., 2003, Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols. Journal of Geophysical Research, 108, 4097, doi:10.1029/2002JD002622.
  31. Merrill, J.T., Uematsu, M., and Bleck, R., 1989, Meteorological analysis of long range transport of mineral aerosols over the North Pacific. Journal of Geophysical Research, 94, 4895-4907.
  32. Moon, Y.S., Kim, Y.K., Strong, K., Lim, Y.K., Oh, I.B., Song, S.K., and Bae, J.H., 2002, Asian dust transport during blocking episode days over Korea. Journal of Korean Environmental Sciences, 11, 111-120. https://doi.org/10.5322/JES.2002.11.2.111
  33. Moon, Y.S. and Drummond, J., 2009, Enhancement of ozone and carbon monoxide associated with upper cutoff low during springtime in East Asia. Journal of Korean Society for Atmospheric Environment, 26, 475-489. https://doi.org/10.5572/KOSAE.2010.26.5.475
  34. Nickovic, S., Kallos, G., Papadopoulos, A., and Kakaliagou, O., 2001, A model for prediction of desert dust cycle in the atmosphere. Journal of Geophysical Research, 106, 18113-18130. https://doi.org/10.1029/2000JD900794
  35. Park, S.-U. and In, H.-J., 2003, Parameterization of dust emission for the simulation of the Yellow Sand (Asian dust) observed in March 2002 in Korea. Journal of Geophysical Research, 108, 4618, doi:10.1029/2003JD003484.
  36. Park, S.-U. and Lee, E.-H., 2004, Parameterization of Asian dust (Hwangsa) particle-size distributions for use in dust emission models. Atmospheric Environment 38, 2155-2162. https://doi.org/10.1016/j.atmosenv.2004.01.024
  37. Park, S.-U., Choe, A., Park, M.-S., and Lee, E.-H., 2008, Asian dust aerosol models (ADAM). Tech Monitor, Special Feature, 24-29.
  38. Park, S.-U., Choe, A., Lee, E.-H., Park, M.-S., and Song, X., 2010a, The Asian dust aerosol model 2 (ADAM2) with the use of Normalized Difference Vegetation Index (NDVI) obtained from the Spot4/vegetation data. Theoretical and Applied Climatology, 101, 191-208. https://doi.org/10.1007/s00704-009-0244-4
  39. Park, S.-U, Choe, A., and Park, M.-S., 2010b, Asian dust aerosol budgets over the Asia region in 2009 estimated by ADAM2. Athens Institute for Education and Research Environment (ATINER). 5th Annual International Symposium on Environment, p. 69.
  40. Park, S.-U, Choe, A., Park, M.-S., and Chun, Y., 2010c, Performance tests of the Asian dust aerosol model 2 (ADAM 2). Journal of Sustainable Energy and Environmnet, 1, 77-83.
  41. Shao, Y., 2001, A model for mineral dust emission. Journal of Geophysical Research, 106, 20239-20254. https://doi.org/10.1029/2001JD900171
  42. Shao, Y., 2004, Simplification of a dust emission scheme and comparison with data. Journal of Geophysical Research, 109, D10202, doi:10.1029/2003JD004372.
  43. Shao, Y. and Dong, C.H., 2006, A review on East Asian dust storm climate, modelling and monitoring. Global and Planetary Change, 52, 1-22. https://doi.org/10.1016/j.gloplacha.2006.02.011
  44. Sugimoto, N., Hara, Y., Shimizu, A., Yumimoto, K., Uno, I., and Nishikawa, M., 2011, Comparison of surface observations and a regional dust transport model assimilated with lidar network data in Asian dust event of March 29 to April 2, 2007. Sola, 7A, 13-16. https://doi.org/10.2151/sola.7A-004
  45. Sun, J., Zhang, M., and Liu, T., 2001, Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960-1999: Relations to source area and climate. Journal of Geophysical Research, 106, 10325-10333. https://doi.org/10.1029/2000JD900665
  46. Tanaka, T.Y., Orito, K., Sekiyama, T.T., Shibata, K., Chiba, M., and Tanaka, H., 2003, MASINGAR, a global tropospheric aerosol chemical transport model coupled with MRI/JMA98 GCM: Model description. Meteorological Geophysics, 53, 119-138. https://doi.org/10.2467/mripapers.53.119
  47. Teppei, J.Y. and Yamazaki, K., 2009, Impacts of Asian dust storm associated with the stratosphere-to-troposphere transport in the spring of 2001 and 2002 on dust and tritium variations in Mount Wrangell ice core, Alaska. Atmospheric Environment, 43, 2582-2590. https://doi.org/10.1016/j.atmosenv.2009.02.025
  48. Uno, I., Carmichael, G.R., Streets, D.G., Tang, Y., Yienger, J.J., Satake, S., Wang, Z., Woo, J.-H., Guttikunda, S., Uematsu, M., Matsumoto, K., Tanimoto, H., Yoshioka, K., and Iida, T., 2003, Regional chemical weather forecasting system CFORS: Model descriptions and analysis of surface observations at Japanese island stations during the ACE-Asia experiment. Journal of Geophysical Research, 108, D23, doi:10.1029/2002JD002845.
  49. Van Harmelen, A.K., Denier Van Der Gon, H.A.C., Kok, H.J.G., Appelman, W.J., Visschedijk, A.J.H., and Hulskotte, J.H., 2004, Particulate matter in Dutch pollutant emission register: State of affairs. TNO-report, R 2004/428, 176 p.
  50. Vautard, R., Bassagnet, B., Chin, M., and Menut, L., 2005, On the contribution of natural aeolian sources to particulate matter concentrations in Europe: Testing hypotheses with a modelling approach. Atmospheric Environment, 39, 3291-3303. https://doi.org/10.1016/j.atmosenv.2005.01.051
  51. Wang, Z., Ueda, H., and Huang, M., 2000, A deflation module for use in modeling long-range transport of yellow sand over East Asia. Journal of Geophysical Research, 105, 26947-26959. https://doi.org/10.1029/2000JD900370
  52. Westphal D.L., Toon, O.B., and Carson, T.N., 1987, A two-dimensional numerical investigation of the dynamics and microphysics of Saharan dust storms. Journal of Geophysical Research, 92, 3027-3049. https://doi.org/10.1029/JD092iD03p03027
  53. Westphal, D.L., Toon, O.B., and Carson, T.N., 1988, A case study of mobilisation and transport of Saharan dust. Journal of Atmospheric Science, 45, 2145-2175. https://doi.org/10.1175/1520-0469(1988)045<2145:ACSOMA>2.0.CO;2
  54. Yasunari, T.J. and Yamazaki, K., 2009, Impacts of Asian dust storm associated with the stratosphere-to-troposphere transport in the spring of 2001 and 2002 on dust and tritium variations in mount Wrangell ice core, Alaska. Atmospheric Environment, 43, 2582-2590. https://doi.org/10.1016/j.atmosenv.2009.02.025
  55. Zender, C.S., Bian, H., and Newman, D., 2003, Mineral dust entrainment and deposition (DEAD) model: Description and 1990s dust climatology. Journal of Geophysical Research, 108, 1-19.
  56. Zhao, T.L., Gong, S.L., Zhang, X.Y., Abdel-Mawgoud, A., and Shao, Y.P., 2006, An assessment of dust emission schemes in modeling east Asian dust storms. Journal of Geophysical Research, 111, D05S90, doi:10.1029/2004JD005746.

Cited by

  1. Emissions Using the WRF-CMAQ Model in Korea vol.34, pp.3, 2013, https://doi.org/10.5467/JKESS.2013.34.3.209
  2. Analysis of Sensitivity to Prediction of Particulate Matters and Related Meteorological Fields Using the WRF-Chem Model during Asian Dust Episode Days vol.35, pp.1, 2014, https://doi.org/10.5467/JKESS.2014.35.1.1
  3. Estimation of Chemical Speciation and Temporal Allocation Factor of VOC and PM2.5 for the Weather-Air Quality Modeling in the Seoul Metropolitan Area vol.36, pp.1, 2015, https://doi.org/10.5467/JKESS.2015.36.1.36
  4. A Study on Prediction of Asian Dusts Using the WRF-Chem Model in 2010 in the Korean Peninsula vol.36, pp.1, 2015, https://doi.org/10.5467/JKESS.2015.36.1.90
  5. A Study on the Outbreak and Transport Processes of the Severe Asian Dust Event Observed in March 2010 vol.32, pp.3, 2016, https://doi.org/10.5572/KOSAE.2016.32.3.256
  6. Episode in Busan vol.32, pp.5, 2016, https://doi.org/10.5572/KOSAE.2016.32.5.513
  7. An Analysis of the Range of Brightness Temperature Differences Associated with Ground Based Mass Concentrations for Detecting the Large-scale Transport of Haze vol.37, pp.7, 2016, https://doi.org/10.5467/JKESS.2016.37.7.434