DOI QR코드

DOI QR Code

Near Infrared Laser Based on Polymer Waveguide Bragg Grating

폴리머 광도파로 브래그 격자 기반의 근적외선 레이저

  • Kim, Kyung-Jo (Nano-Bio Photonics Lab., Department of Electrical Engineering, Pusan National University) ;
  • Son, Nam-Seon (Nano-Bio Photonics Lab., Department of Electrical Engineering, Pusan National University) ;
  • Kim, Jun-Whee (Nano-Bio Photonics Lab., Department of Electrical Engineering, Pusan National University) ;
  • Oh, Min-Cheol (Nano-Bio Photonics Lab., Department of Electrical Engineering, Pusan National University)
  • 김경조 (부산대학교 전자공학과 나노바이오광소자연구실) ;
  • 손남선 (부산대학교 전자공학과 나노바이오광소자연구실) ;
  • 김준휘 (부산대학교 전자공학과 나노바이오광소자연구실) ;
  • 오민철 (부산대학교 전자공학과 나노바이오광소자연구실)
  • Received : 2011.06.27
  • Accepted : 2011.08.01
  • Published : 2011.08.25

Abstract

An external cavity laser operating at near infrared wavelength is demonstrated by incorporating polymer waveguide Bragg reflectors. 3rd order Bragg grating and oversized rip waveguide structure were designed by using the effective index method and the transmission matrix method. The polymer waveguide was fabricated using polymer materials with refractive indices of 1.462 and 1.435 for the core and the cladding layers, respectively. The external feedback laser with 875-nm Bragg grating exhibits single mode lasing located at 850-nm wavelength with an output power of 0 dBm, a 20-dB bandwidth of 0.2 nm and a side mode suppression ratio of 40 dB.

근적외선 대역에서 동작 가능한 가변파장레이저 구현을 위하여 브래그 격자와 반도체 광증폭기로 구성된 외부 공진기 형태의 레이저를 제작하였다. 폴리머 광도파로는 굴절률이 1.462, 1.435 인 ZPU 폴리머를 이용하여 제작되었다. 근적외선 파장에서 반사를 일으키는 브래그 격자의 제작을 위해서는 주기가 875 nm 로서 비교적 크고 제작이 손쉬운 3차 브래그 격자를 이용하였다. 폴리머 광도파로 브래그 반사기를 이용하여 제작된 근적외선 외부공진 레이저는 850 nm 파장에서 0 dBm의 출력 파워와 0.2 nm의 20-dB bandwidth, 40 dB 이상의 Side Mode Suppression Ratio을 가지는 단일 모드 레이저 특성을 보였다.

Keywords

References

  1. B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sens. Actuators B 85, 219-226 (2002). https://doi.org/10.1016/S0925-4005(02)00111-9
  2. D. Hradetzky, C. Mueller, and H. Reinecke, "Interferometric label-free biomolecular detection system," J. Opt. A: Pure Appl. Opt. 8, S360-S364 (2006). https://doi.org/10.1088/1464-4258/8/7/S11
  3. J.-W. Kim, K.-J. Kim, J.-A. Yi, and M.-C.Oh, "Polymer waveguide label-free biosensors with enhanced sensitivity by incorporating low-refractive-index polymers," IEEE J. Select. Topics Quantum Electron. 4, 973-980 (2010). https://doi.org/10.1109/JSTQE.2009.2032759
  4. L. L. Chan, B. T. Cunningham, P. Y. Li, and D. Puff, "Selfreferenced assay method for photonic crystal biosensors: application to small molecule analytes," Sens. Actuators B 120, 392-398 (2007). https://doi.org/10.1016/j.snb.2006.02.047
  5. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1996).
  6. H. Lim, J. F. de Boer, B. H. Park, E. C. W. Lee, R. Yelin, and S. H. Yun, "Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range," Opt. Express 14, 5937-5944 (2006). https://doi.org/10.1364/OE.14.005937
  7. S. W. Lee, C.-S. Kim, and B.-M. Kim, "External line-cavity wavelength-swept source at 850 nm for optical coherence tomography," IEEE Photon. Technol. Lett. 19, 176-178 (2007). https://doi.org/10.1109/LPT.2006.890043
  8. F. Chen, J. Wang, C. Ye, W. Ni, J. Chan, Y. Yang, and D. Lo, "Near infrared distributed feedback lasers based on LDS dye-doped zirconia-organically modified silicate channel waveguides," Opt. Express 13, 1643-1650 (2005). https://doi.org/10.1364/OPEX.13.001643
  9. R. K. Price, V. C. Elarde, and J. J. Coleman, "Widely tunable 850-nm metal-filled asymmetric cladding distributed Bragg reflector lasers," IEEE J. Quantum Electron. 42, 667-674 (2006). https://doi.org/10.1109/JQE.2006.876715
  10. Be. Wenger, N. Tétreault, M. E. Welland, and R. H. Friend, "Mechanically tunable conjugated polymer distributed feedback lasers," Appl. Phys. Lett. 97, 193303 (2010). https://doi.org/10.1063/1.3509405
  11. Y.-O. Noh, H.-J. Lee, J.-J. Ju, M.-S. Kim, S.-H. Oh, and M.-C. Oh, "Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings," Opt. Express 16, 18194-18201 (2008). https://doi.org/10.1364/OE.16.018194
  12. K.-J. Kim, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, "Flexible polymer waveguide tunable lasers," Opt. Express 18, 8392-8399 (2010). https://doi.org/10.1364/OE.18.008392
  13. R. Moosburger and K. Petermann, "4 ${\times}$ 4 digital optical matrix switch using polymeric oversized rib waveguides," IEEE Photon. Technol. Lett. 10, 684-686 (1998). https://doi.org/10.1109/68.669250