DOI QR코드

DOI QR Code

Analysis on the Cooling Efficiency of High-Performance Multicore Processors according to Cooling Methods

기계식 쿨링 기법에 따른 고성능 멀티코어 프로세서의 냉각 효율성 분석

  • Kang, Seung-Gu (School of Electronics and Computer Engineering, Chonnam National University) ;
  • Choi, Hong-Jun (School of Electronics and Computer Engineering, Chonnam National University) ;
  • Ahn, Jin-Woo (School of Electronics and Computer Engineering, Chonnam National University) ;
  • Park, Jae-Hyung (School of Electronics and Computer Engineering, Chonnam National University) ;
  • Kim, Jong-Myon (School of Computer Engineering and Information Technology, University of Ulsan) ;
  • Kim, Cheol-Hong (School of Electronics and Computer Engineering, Chonnam National University)
  • 강승구 (전남대학교 전자컴퓨터공학부) ;
  • 최홍준 (전남대학교 전자컴퓨터공학부) ;
  • 안진우 (전남대학교 전자컴퓨터공학부) ;
  • 박재형 (전남대학교 전자컴퓨터공학부) ;
  • 김종면 (울산대학교 컴퓨터정보통신공학부) ;
  • 김철홍 (전남대학교 전자컴퓨터공학부)
  • Received : 2010.11.12
  • Accepted : 2011.03.26
  • Published : 2011.07.31

Abstract

Many researchers have studied on the methods to improve the processor performance. However, high integrated semiconductor technology for improving the processor performance causes many problems such as battery life, high power density, hotspot, etc. Especially, as hotspot has critical impact on the reliability of chip, thermal problems should be considered together with performance and power consumption when designing high-performance processors. To alleviate the thermal problems of processors, there have been various researches. In the past, mechanical cooling methods have been used to control the temperature of processors. However, up-to-date microprocessors causes severe thermal problems, resulting in increased cooling cost. Therefore, recent studies have focused on architecture-level thermal-aware design techniques than mechanical cooling methods. Even though architecture-level thermal-aware design techniques are efficient for reducing the temperature of processors, they cause performance degradation inevitably. Therefore, if the mechanical cooling methods can manage the thermal problems of processors efficiently, the performance can be improved by reducing the performance degradation due to architecture-level thermal-aware design techniques such as dynamic thermal management. In this paper, we analyze the cooling efficiency of high-performance multicore processors according to mechanical cooling methods. According to our experiments using air cooler and liquid cooler, the liquid cooler consumes more power than the air cooler whereas it reduces the temperature more efficiently. Especially, the cost for reducing $1^{\circ}C$ is varied by the environments. Therefore, if the mechanical cooling methods can be used appropriately, the temperature of high-performance processors can be managed more efficiently.

사용자들의 높은 요구 사항을 만족시키는 컴퓨팅 시스템을 개발하기 위해 프로세서의 성능을 향상시키기 위한 연구는 지속적으로 진행되어 왔다. 공정 기술 발달을 비롯한 다양한 기술 발전을 통하여 프로세서의 성능은 비약적으로 발전하였으나 그 이면에는 새로운 문제들이 발생하게 되었다. 그 중에서, 최근 들어 주된 문제점 중 하나로 인식되고 있는 열섬 현상은 칩의 신뢰성에 심각한 영향을 미치기 때문에 프로세서 설계 시 성능, 전력 효율성과 함께 반드시 고려되어야 한다. 과거에는 기계적인 냉각 기법으로 프로세서의 온도를 효과적으로 제어할 수 있었지만, 최근에는 프로세서의 성능이 높아져 발생되는 온도가 높아 냉각 비용이 급속히 증가하고 있다. 이로 인해, 최근의 온도 제어 연구는 기계적인 냉각 기법보다는 구조적 기법을 통한 온도 제어에 더욱 집중되는 추세를 보이고 있다. 하지만, 구조적 기법을 통해 온도를 제어하는 방안은 프로세서의 온도를 낮추는 데에는 효율적이지만 이를 위해 성능을 희생한다는 단점이 존재한다. 따라서, 기계적 냉각 기법을 통해 프로세서의 온도를 효율적으로 제어할 수 있다면, 성능 저하가 발생되는 구조적 기법을 통한 온도 제어기법의 사용 빈도가 줄어 그 만큼 성능이 향상될 수 있을 것으로 기대된다. 본 논문에서는 고성능 멀티코어 프로세서에서 발생하는 온도를 기계적인 냉각 기법이 얼마나 효율적으로 제어할 수 있는지를 상세하게 분석해 보고자 한다. 공랭식 냉각기와 수랭식 냉각기를 이용하여 다양한 실험을 수행한 결과, 공랭식 냉각기와 비교하여 수랭식 냉각기가 온도를 효과적으로 제어하는 반면에 전력 소모가 더 많음을 확인할 수 있다. 특히, 1W의 전력을 통해 낮출 수 있는 온도를 분석해 보면 공랭식에 비해서 수랭식이 더 효율적임을 알 수 있으며, 수랭식 냉각기의 경우에는 냉각 단계가 냉각 효율은 오히려 감소하게 됨을 확인할 수 있다. 실험 결과를 바탕으로 온도에 따라 적절하게 기계적 냉각 기법을 활용한다면 프로세서의 온도를 더욱 효과적으로 제어할 수 있을 것으로 기대된다.

Keywords

References

  1. M. Powell, S.H. Yang, B. Falsafi, K. Roy, and T.N. Vijaykumar, "Gated-Vdd : A circuit technique to reduce leakage in deep-submicron cache memories," In Proceedings of International Symposium on Low Power Electronics and Design, pp. 90-95, July 2000.
  2. S. J. E. Wilson, N. P. Jouppi, "An enhanced access and cycle time model for on-chip caches," Technical Report 93/5, Digital Equipment Corporation, Western Research Laboratory, 1994.
  3. N. P. Jouppi, "Improving Direct-Mapped Cache Perfor mance by the Addition of a Small Fully-Associative Cache and Prefetch Buffers," In Proceedings of 17th Annual International Symposium on Computer Architecture, pp. 364-373, June 1990.
  4. Y.J. Park, J.M. Kim, C.H. Kim, "Low-power Filter Cache Design Technique for Multicore Processors," Journal of The Korea Society of Computer and Information, Vol. 14, No. 12, pp. 9-16, Dec. 2009.
  5. J.H. Kong, S.W. Chung, "Recent Thermal Management Techniques for Microprocessors," Communications of KIISE, Vol. 27, No. 11, pp. 72-79, Nov. 2009
  6. F. Pollack. "New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies," International Symposium on Microarchitecture (MICRO-32) keynote speech, 1999.
  7. P. Dadvar, K. Skadron, "Potential thermal security risks," In Proceedings of the IEEE/ASME Semiconductor Thermal Measurement, Modeling, and Management Symposium (SEMI-THERM), pp. 229-234, March 2005.
  8. J.H. Choi, "Thermal Management for Multi-core Processor and Prototyping Thermal-aware Task Scheduler," Journal of KIISE : Computer Systems and Theory, vol.35, no.7-8, pp.354-360, Aug. 2008.
  9. S. Gunther, F. Binns, D. Carmean, and J. Hall. "Managing the Impact of Increasing Microprocessor Power Consumption," Intel Technology Journal, 5, Feb. 2001.
  10. J.H. Jeong, "Heat-radiant and Cooling Device of Central Processing Unit and Peripheral devices," JOURNAL OF KOREA INTELLECTUAL PATENT SOCIETY, Vol 8, No. 4, pp. 33-43, Dec. 2006.
  11. L. Yeh, R. Chy, "Thermal Management of Microelectronic Equipment," American Society of Mechanical Engineering, 2001.
  12. Z. Zhijun, L. R. Hoover, and A. L. Phillips, "Advanced thermal architecture for cooling of high power electronics," Components and Packaging Technologies, IEEE Transactions on, vol. 25, no. 4, pp. 629-634, Dec. 2002. https://doi.org/10.1109/TCAPT.2002.807995
  13. H.J. Choi, N.R. Yang, J.A. LEE, J.M. Kim, C.H. Kim, "Processor Design Technique for Low-Temperature Filter Cache," Journal of The Korea Society of Computer and Information, Vol. 15, No. 1, pp. 1-12, Jan. 2010. https://doi.org/10.9708/jksci.2010.15.1.001
  14. K. Sankaranarayanan, S. Velusamy, M. Stan, and K. Skadron, "A Case for Thermal-Aware Floorplanning at the Microarchitectural Level," Journal of Instruction-Level Parallelism, vol. 7, pp. 1-16, July 2005.
  15. D. Brooks and M. Martonosi, "Dynamic Thermal Management for High-Performance Microprocessors," In Proceedings of the 7th International Symposium on High-Performance Computer Architecture, pp. 172-182, Jan. 2001.
  16. K. Choi, R. Soma, M. Pedram, "Dynamic voltage and frequency scaling based on workload decomposition," In Proceedings of the 2004 international symposium on Low power electronics and design, pp. 174-179, Aug. 2004.
  17. L. Benini, G. De Micheli, E. Macii, M. Poncino, R. Scarsi, "Symbolic synthesis of clock-gating logic for power optimization of synchronous controllers," In Transactions on Design Automation of Electronic Systems (TODAES), vol. 4, issue. 4, pp. 351-375, Oct. 1999. https://doi.org/10.1145/323480.323482
  18. R. Mahajan, "Thermal Management of CPUs: A Perspective on Trends, Needs, and Opportunities," In the 8th International Workshop on THERMal INvestigations of ICs and Systems 2002.
  19. "Energy-Optimal Dynamic Thermal Management : Computation and Cooling Power-Optimization", Donghwa Shin, Sung Woo Chung, Eui-Young Chung, Naehyuk Chang, IEEE Trans. On Industrial Informatics, Vol. 6, No 3. Aug. 2010
  20. Peltier Module, http://blog.daum.net/iantech/6045548
  21. Peltier Module, http://blog.daum.net/iantech/6045548
  22. HWMonitor, http://www.cpuid.com
  23. A. K. Coskun, A. B. Kahng, T. S. Rosing, "Temperature- and Cost-Aware Design of 3D Multiprocessor Architectures," In Proceedings of 12th Euromicro Conference on Digital System Design and Architectures, Methods and Tools, pp. 183-190, 2009.