DOI QR코드

DOI QR Code

Thermal Analysis of a Combined Absorption Cycle of Cogeneration of Power and Cooling for Use of Low Temperature Source

저온 열원의 활용을 위한 흡수 발전/냉각 복합 사이클의 열적 해석

  • Kim, Kyoung-Hoon (Department of Mechanical Engineering, Kumoh National Institute of Technology)
  • 김경훈 (금오공과대학교 기계공학과)
  • Received : 2011.02.14
  • Accepted : 2011.05.01
  • Published : 2011.06.10

Abstract

Thermodynamic cycles using binary mixtures as working fluids offer a high potential for utilization of low-temperature heat sources. This paper presents a thermodynamic performance analysis of Goswami cycle which was recently suggested to produce power and cooling simultaneously and combines the Rankine cycle and absorption refrigeration cycle by using ammoniawater mixture as working fluid. Effects of the system parameters such as concentration of ammonia and turbine inlet pressure on the system are parametrically investigated. Results show that refrigeration capacity or thermal efficiency has an optimum value with respect to ammonia concentration as well as to turbine inlet pressure.

Keywords

References

  1. Roy, P., Desilets, M., Galanis, N., Nesreddine, H., and Cayer, E., 2010, Thermodynamic analysis of a power cycle using a low-temperature source and a binary $NH_{3}-H_{2}O$ mixture as working fluid, Int. J. Thermal Sci., Vol. 49, pp. 48-58. https://doi.org/10.1016/j.ijthermalsci.2009.05.014
  2. Ogriseck, S., 2009, Integration of Kalina cycle in a combined heat and power plant, a case study, Applied Ther. Eng., Vol. 29, pp. 2843-2848. https://doi.org/10.1016/j.applthermaleng.2009.02.006
  3. Bombarda, P., Invernizzi, C. M. and Pietra, C., 2010, Heat recovery from Diesel engine:A thermodynamic comparision between Kalina and ORC cycle, App. Therm. Eng., Vol. 30, pp. 212-219. https://doi.org/10.1016/j.applthermaleng.2009.08.006
  4. Kim, K. H., Ko, H. J. and Kim, S. W., 2011, Performance Analysis of Kalina Cycle using Ammonia-Water Mixture as Working Fluid for Use of Low-Temperature Energy Source, Trans. Korean Hydrogen New Energy Society, Vol. 22, pp. 109-117.
  5. Prisyazhniuk, V. A., 2008, Alternative trends in development of thermal power plant, Applied Thermal Engineering, Vol. 28, pp. 190-194. https://doi.org/10.1016/j.applthermaleng.2007.03.025
  6. Zamfirescu, C. and Dincer, I., 2008, Thermodynamic analysis of a novel ammonia-water trilateral Rankine cycle, Thermo-chimica Acta, Vol. 477, pp. 7-15. https://doi.org/10.1016/j.tca.2008.08.002
  7. Kiani, B., Akisawa, A. and Kashiwagi, T., 2008, Thermodynamic analysis of load-leveling hyper energy converting and utilization system, Energy, Vol. 33, pp. 400-409. https://doi.org/10.1016/j.energy.2007.10.005
  8. Nowak, W., Stachel, A. A. and Borsukiewicz- Gozdur, A., 2008, Possibilities of implemen tation of a absorption heat pump in realization of the Clausius-Rankine cycle in geothermal power station, Applied Ther. Eng., Vol. 28, pp. 335-340. https://doi.org/10.1016/j.applthermaleng.2006.02.031
  9. Lolos, P. A. and Rogdakis, E. D., 2009, A Kalina power cycle driven by renewable energy sources, Energy, Vol. 34, pp. 457-464. https://doi.org/10.1016/j.energy.2008.12.011
  10. Arslan, O., 2010, Exergoeconomic evaluation of electricity generation by the medium temperature geothermal resources, using Kalina cycle:Simav case study, Int. J. Therm. Sci., Vol. 49, pp. 1866-1873. https://doi.org/10.1016/j.ijthermalsci.2010.05.009
  11. Kim, K. H., Kim, S. W. and Ko, H. J., 2011, Study on the Rankine Cycle using Ammonia-Water Mixture as Working Fluid for Low-Temperature Waste Heat, Trans. Korean Hydrogen New Energy Society, Vol. 21, pp. 570-579.
  12. Kim, K. H., 2011, Study on Regenerative Rankine Cycle with Partial-Boiling Flow Using Ammonia-Water Mixture as Working Fluid, SAREK, Vol. 23, pp. 224-231.
  13. Wagner, W. R., Zamfirescu, C., and Dincer, I., 2010, Thermodynamic performance assessment of an ammonia-water Rankine cycle for power and heat production, Energy Convertsion Management, Vol. 51, pp. 2501-2509. https://doi.org/10.1016/j.enconman.2010.05.014
  14. Wang, J., Dai, Y., Zhang, T., and Ma, S., 2009, Parametric analysis for a new power and ejector-absorption refrigeration cycle, Energy, Vol. 34, pp. 1587-1593. https://doi.org/10.1016/j.energy.2009.07.004
  15. Xu, F., Goswami, D. Y., and Bhagwat, S. S., 2000, A combined power/cooling cycle, Energy, Vol. 25, pp. 233-246. https://doi.org/10.1016/S0360-5442(99)00071-7
  16. Padilla, R. V., Demirkaya, G. and Goswami, D. Y., 2010, Stefanakos, Analysis of power and cooling using ammonia-water mixture, Energy, Vol. 35, pp. 4649-4657. https://doi.org/10.1016/j.energy.2010.09.042
  17. Xu, F. and Goswami, D. Y., 1999, Thermodynamic properties of ammonia-water mixtures for power-cycle application, Energy, Vol. 24, pp. 525-536. https://doi.org/10.1016/S0360-5442(99)00007-9