DOI QR코드

DOI QR Code

Flexural Strength of Macroporous Silicon Carbide Ceramics

거대기공 다공질 탄화규소 세라믹스의 꺾임강도

  • Lim, Kwang-Young (Functional Ceramics Laboratory, Department of Materials Science and Engineering, The University of Seoul) ;
  • Kim, Young-Wook (Functional Ceramics Laboratory, Department of Materials Science and Engineering, The University of Seoul) ;
  • Song, In-Hyuck (Engineering Ceramics Group, Korea Institute of Materials Science) ;
  • Bae, Ji-Soo (YJC Co. Ltd.)
  • 임광영 (서울시립대학교 신소재공학과 기능성세라믹스연구실) ;
  • 김영욱 (서울시립대학교 신소재공학과 기능성세라믹스연구실) ;
  • 송인혁 (재료연구소(KIMS) 엔지니어링세라믹연구그룹) ;
  • 배지수 ((주) 와이제이씨)
  • Received : 2011.08.04
  • Accepted : 2011.08.22
  • Published : 2011.09.30

Abstract

Macroporous silicon carbide (SiC) ceramics were fabricated by powder processing and polymer processing using carbon-filled polysiloxane as a precursor. The effects of the starting SiC polytype, template type, and template content on porosity and flexural strength of macroporous SiC ceramics were investigated. The ${\beta}$-SiC powder as a starting material or a filler led to higher porosity than ${\alpha}$-SiC powder, owing to the impingement of growing ${\alpha}$-SiC grains, which were transformed from ${\beta}$-SiC during sintering. Typical flexural strength of powder-processed macroporous SiC ceramics fabricated from ${\alpha}$-SiC starting powder and polymer microbeads was 127 MPa at 29% porosity. In contrast, that of polymer-processed macroporous SiC ceramics fabricated from carbon-filled polysiloxane, ${\beta}$-SiC fillers, and hollow microspheres was 116MPa at 29% porosity. The combination of ${\alpha}$-SiC starting powder and a fairly large amount (10 wt%) of $Al_2O_3-Y_2O_3$ additives led to macroporous SiC ceramics with excellent flexural strength.

Keywords

References

  1. N. Keller, C. Pham-Huu, S. Roy, M. J. Ledoux, C. Estournes, and J. Guille, "Influence of the Preparation Conditions on the Synthesis of High Surface Area SiC for Use as a Heterogeneous Catalyst Support," J. Mater. Sci., 34 3189-202 (1999). https://doi.org/10.1023/A:1004681806843
  2. S.-S. Hwang and T.-W. Kim, "Fabrication and Properties of Reaction Bonded SiC Hot Gas Filter Using Si Melt Infiltration Method(in Korean)," J. Kor. Ceram. Soc., 40 [9] 891-96 (2003). https://doi.org/10.4191/KCERS.2003.40.9.891
  3. S. H. Lee and Y.-W. Kim, "Processing of Cellular SiC Ceramics Using Polymer Microbeads," J. Kor. Ceram. Soc., 43 [8] 458-62 (2006). https://doi.org/10.4191/KCERS.2006.43.8.458
  4. J. H. Eom, D. H. Jang, Y.-W. Kim, I. H. Song, and H. D. Kim, "Low Temperature Processing of Porous Silicon Carbide Ceramics by Carbothermal Reduction(in Korean)," J. Kor. Ceram. Soc., 43 [9] 552-57 (2006). https://doi.org/10.4191/KCERS.2006.43.9.552
  5. S. H. Yun, P. N. Tan, Y. D. Kim, and S. W. Park, "Effects of Amounts of Carbon Source and Infiltrated Si on the Porosity and Fracture Strength of Porous Reaction Bonded SiC(in Korean)," J. Kor. Ceram. Soc., 44 [7] 381-86 (2007). https://doi.org/10.4191/KCERS.2007.44.7.381
  6. S. H. Chae, Y.-W. Kim, I. H. Song, H. D. Kim, J. S. Bae, S. M. Na, and S. I. Kim, "Low Temperature Processing and Properties of Porous Frit-Bonded SiC Ceramics (in Korean)," J. Kor. Ceram. Soc., 46 [5] 488-92 (2009). https://doi.org/10.4191/KCERS.2009.46.5.488
  7. Y. H. Choi, Y.-W. Kim, S. K. Woo, and I. S. Han, "Effect of Template Content on Microstructure and Flexural Strength of Porous Mullite-Bonded Silicon Carbide Ceramics (in Korean)," J. Kor. Ceram. Soc., 47 [6] 509-14 (2010). https://doi.org/10.4191/KCERS.2010.47.6.509
  8. I. S. Han, D. W. Seo, S. Kim, K. S. Hong, S. K. Woo, and Y.-W. Kim, "Fabrication and Properties of SiC Candle Filter by Vacuum Extrusion and Ramming Process (II) (in Korean)," J. Kor. Ceram. Soc., 47 [6] 515-23 (2010). https://doi.org/10.4191/KCERS.2010.47.6.515
  9. I. H. Song, M. J. Park, H. D. Kim, Y.-W. Kim, and J. S. Bae, "Microstructure and Permeability Property of Si Bonded Porous SiC with Variations in the Carbon Content (in Korean)," J. Kor. Ceram. Soc., 47 [6] 546-52 (2010). https://doi.org/10.4191/KCERS.2010.47.6.546
  10. B. V. Manoj Kumar and Y.-W. Kim, "Processing of Polysiloxane-Derived Porous Ceramics: A Review," Sci. Technol. Adv. Mater., 11 [4] 044303 (2010). https://doi.org/10.1088/1468-6996/11/4/044303
  11. S. H. Kim, Y.-W, Kim, J. Y. Yun, and H. D. Kim, "Fabrication of Porous SiC Ceramics by Partial Sintering and their Properties (in Korean)," J. Kor. Ceram. Soc., 41 [7] 541-47 (2004). https://doi.org/10.4191/KCERS.2004.41.7.541
  12. F. F. Lange and K. T. Miller, "Open Cell, Low-Density Ceramics Fabricated from Reticulated Polymer Substrates," Adv. Ceram. Mater., 2 [4] 827-31 (1987).
  13. Y. J. Jin and Y.-W. Kim, "Low Temperature Processing of Highly Porous Silicon Carbide Ceramics with Improved Flexural Strength," J. Mater. Sci., 45 282-85 (2010). https://doi.org/10.1007/s10853-009-3993-7
  14. Y.-W. Kim, S. H. Kim, I. H. Song, H. D. Kim, and C. B. Park, "Fabrication of Open-Cell, Microcellular Silicon Carbide Ceramics by Carbothermal Reduction," J. Am. Ceram. Soc., 88 [10] 2949-51 (2005). https://doi.org/10.1111/j.1551-2916.2005.00509.x
  15. Y.-W. Kim, J. H. Eom, C. Wang, and C. B. Park, "Processing of Porous Silicon Carbide Ceramics from Carbon-Filled Polysiloxane by Extrusion and Carbothermal Reduction," J. Am. Ceram. Soc., 91 [4] 1361-64 (2008). https://doi.org/10.1111/j.1551-2916.2008.02280.x
  16. Y.-W. Kim, S. H. Kim, C. Wang, and C. B. Park, "Fabrication of Microcellular Ceramics Using Gaseous Carbon Dioxide," J. Am. Ceram. Soc., 86 [12] 2231-33 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03641.x
  17. V. Z. Stavric and M. Hue, "Rekristallisiertes Siliziumkarbid," Keram. Zeit., 27 [3] 125-28 (1975).
  18. B. V. Manoj Kumar, J. H. Eom, Y.-W. Kim, I. S. Han, and S. K. Woo, "Effect of Aluminum Source on Flexural Strength of Mullite-Bonded Porous Silicon Carbide Ceramics," J. Ceram. Soc. Jpn., 118 [1] 13-18 (2010). https://doi.org/10.2109/jcersj2.118.13
  19. Y. S. Chun and Y.-W. Kim, "Processing of Silica-Bonded Silicon Carbide Ceramics," J. Kor. Ceram. Soc., 43 [6] 327-32 (2006). https://doi.org/10.4191/KCERS.2006.43.6.327
  20. C. H. Choi, Y.-W. Kim, S. K. Woo, and I. S. Han, "Effect of Starting SiC Particle Size on Nitridation and Strength of Silicon Nitride-Bonded Silicon Carbide Ceramics (in Korean)," J. Kor. Ceram. Soc., 47 [2] 157-62 (2010). https://doi.org/10.4191/KCERS.2010.47.2.157
  21. K. S. Seo, S. W. Park, and H. B. Kwon, "Fabrication of Porous RBSC by Si Melt Infiltration (in Korean)," J. Kor. Ceram. Soc., 37 [11] 1119-25 (2000).
  22. K. Y. Lim, Y.-W. Kim, S. K. Woo, and I. S. Han, "Effect of Si:C Ratio on Porosity and Flexural Strength of Porous Self- Bonded Silicon Carbide Ceramics (in Korean)," J. Kor. Ceram. Soc., 45 [5] 285-89 (2008). https://doi.org/10.4191/KCERS.2008.45.5.285
  23. K. Y. Lim, Y.-W. Kim, S. K. Woo, and I. S. Han, "Effect of Carbon Source on Porosity and Flexural Strength of Porous Self-Bonded Silicon Carbide Ceramics (in Korean)," J. Kor. Ceram. Soc., 45 [7] 430-37 (2008). https://doi.org/10.4191/KCERS.2008.45.7.430
  24. K. Y. Lim, Y.-W. Kim, S. K. Woo, and I. S. Han, "Effect of Aluminum Addition on Porosity and Flexural Strength of Porous Self-Bonded Silicon Carbide Ceramics (in Korean)," J. Kor. Ceram. Soc., 46 [5] 520-24 (2009). https://doi.org/10.4191/KCERS.2009.46.5.520
  25. G. P. Kennedy, K. Y. Lim, and Y.-W. Kim, "Effect of Additive Composition on Porosity and Flexural Strength of Porous Self-Bonded SiC Ceramics," J. Ceram. Soc. Japan, 118 [9] 810-13 (2010). https://doi.org/10.2109/jcersj2.118.810
  26. B. V. Manoj Kumar, K. Y. Lim, and Y.-W. Kim, "Influence of Submicron SiC Particle Addition on Porosity and Flexural Strength of Porous Self-Bonded Silicon Carbide" Met. Mater. Int., 17 [3] 435-40 (2011). https://doi.org/10.1007/s12540-011-0621-2
  27. J. H. Eom and Y.-W. Kim, "Low-Temperature Processing of Silicon Oxycarbide-Bonded Silicon Carbide," J. Am. Ceram. Soc., 93 [9] 2463-66 (2010). https://doi.org/10.1111/j.1551-2916.2010.03812.x
  28. Y.-W. Kim, M. Mitomo, H. Emoto, J. G. Lee, "Effect of Initial ${\alpha}-Phase$ Content on Microstructure and Mechanical Properties of Sintered Silicon Carbide," J. Am. Ceram. Soc., 81 [12] 3136-40 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02748.x
  29. S. H. Chae, Y.-W. Kim, I. H. Song, H. D. Kim, and J. S. Bae, "Effects of Template Size and Content on Porosity and Strength of Macroporous Zirconia Ceramics (in Korean)," J. Kor. Ceram. Soc., 46 [1] 35-40 (2009). https://doi.org/10.4191/KCERS.2009.46.1.035
  30. E. J. Lee, I. H. Song, H. D. Kim, Y.-W. Kim, and J. S. Bae, "Investigation on the Pore Properties of the Microcellular $ZrO_2$ Ceramics Using Hollow Microsphere (in Korean)," J. Kor. Ceram. Soc., 46 [1] 108-15 (2009). https://doi.org/10.4191/KCERS.2009.46.1.108
  31. K. Y. Lim, Y.-W. Kim, I. H. Song, H. D. Kim, and J. S. Bae, "Effect of Frit Content on Microstructure and Flexural Strength of Porous Frit-Bonded $Al_2O_3$ Ceramics (in Korean)," J. Kor. Ceram. Soc., 47 [6] 529-33 (2010). https://doi.org/10.4191/KCERS.2010.47.6.529
  32. J. H. Eom, Y.-W. Kim, I. H. Song, and H. D. Kim, "Processing and Properties of Polysiloxane-Derived Porous Silicon Carbide Ceramics Using Hollow Microspheres as Templates," J. Euro. Ceram. Soc., 28 1029-35 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.09.009
  33. P. K. Lin and D. S. Tsai, "Preparation and Analysis of a Silicon Carbide Composite Membrane,"J. Am. Ceram. Soc., 80 [2] 365-72 (1997).
  34. J. H. Eom, Y.-W. Kim, I. H. Song, and H. D. Kim, "Microstructure and Properties of Porous Silicon Carbide Ceramics Fabricated by Carbothermal Reduction and Subsequent Sintering Process," Mater. Sci. Eng. A, 464 129-34 (2007). https://doi.org/10.1016/j.msea.2007.03.076
  35. H. Ye, V. V. Pujar, and N. P. Padture, "Coarsening in Liquid-Phase-Sintered ${\alpha}-SiC$," Acta Mater., 47 [2] 481-87 (1999). https://doi.org/10.1016/S1359-6454(98)00371-1
  36. Y.-W. Kim, M. Mitomo, and G. D. Zhan, "Mechanism of Grain Growth in Liquid-Phase-Sintered ${\alpha}-SiC$," J. Mater. Res., 14 [11] 4291-93 (1999). https://doi.org/10.1557/JMR.1999.0581
  37. S. G. Lee, Y.-W. Kim, and M. Mitomo, "Relationship between Microstructure and Fracture Toughness of Toughened Silicon Carbide Ceramics," J. Am. Ceram. Soc., 84 [6] 1347-53 (2001).
  38. J. H. Eom, Y.-W. Kim, and M. Narisawa, "Microstructural Development of Macroporous Silicon Carbide Ceramics during Annealing," J. Ceram. Proc. Res., 9 [2] 176-79 (2008).
  39. J. H. Eom and Y.-W. Kim, "Effect of Template Size on Microstructure and Strength of Porous Silicon Carbide Ceramics," J. Ceram. Soc. Jpn, 116 [10] 1159-63 (2008). https://doi.org/10.2109/jcersj2.116.1159
  40. J. H. Eom and Y.-W. Kim, "Effect of Additive Composition on Microstructure and Strength of Porous Silicon Carbide Ceramics," J. Mater. Sci., 44 4482-86 (2009). https://doi.org/10.1007/s10853-009-3638-x

Cited by

  1. Effect of SiC Filler Content on Microstructure and Flexural Strength of Highly Porous SiC Ceramics Fabricated from Carbon-Filled Polysiloxane vol.49, pp.6, 2012, https://doi.org/10.4191/kcers.2012.49.6.625
  2. Effect of Additive Composition on Flexural Strength of Cullet-Loess Tile Bodies vol.50, pp.6, 2013, https://doi.org/10.4191/kcers.2013.50.6.416
  3. Processing of Vermiculite-Silica Composites with Prefer-Oriented Rod-Like Pores vol.49, pp.4, 2011, https://doi.org/10.4191/kcers.2012.49.4.347
  4. C/Si 몰 비가 TEOS와 페놀수지를 출발원료 사용하여 합성된 β-SiC 분말의 특성에 미치는 영향 vol.50, pp.1, 2011, https://doi.org/10.4191/kcers.2013.50.1.31
  5. Processing and properties of macroporous silicon carbide ceramics: A review vol.1, pp.3, 2011, https://doi.org/10.1016/j.jascer.2013.07.003