DOI QR코드

DOI QR Code

Characteristic of DLC Thin Film Fabricated by FVAS Method on Tungsten Carbide

초경합금에 FVAS로 코팅한 DLC 박막의 특성

  • Cheon, Min-Woo (Department of Biomedical Engineering, Dongshin University) ;
  • Park, Yong-Pil (Department of Biomedical Engineering, Dongshin University) ;
  • Kim, Tae-Gon (Department of Electrical and Electronic Engineering, Graduate School, Dongshin University) ;
  • Lee, Ho-Shik (Department of Biomedical Engineering, Dongshin University)
  • 천민우 (동신대학교 병원의료공학과) ;
  • 박용필 (동신대학교 병원의료공학과) ;
  • 김태곤 (동신대학교 대학원 전기전자공학과) ;
  • 이호식 (동신대학교 병원의료공학과)
  • Received : 2011.08.22
  • Accepted : 2011.09.14
  • Published : 2011.10.01

Abstract

An optical lens is usually produced in the manner of high temperature compression molding with tungsten carbide alloy molding cores, it is necessary to develop and study technology for super-precision processing of molding cores and coating the core surface. As main methods used in surface improvement technologies using thin film, DLC present high hardness, chemical stability, and outstanding durability of abrasion to be extensively applied in various industrial fields. In this study, the effect of DLC coating of a thin film by means of the FVAS (filtered vacuum arc source) analyzed the characteristics of thin film. Surface roughness before and after DLC coating was measured and the result showed that the surface roughness was improved after coating as compared to before coating. In conclusion, it was observed that DLC coating of the ultra hard alloy core surface for molding had an effect on improving the surface roughness and shape of the core surface. It is considered that this will have an effect on improving abrasion resistance and the service life of the core surface.

Keywords

References

  1. H. S. Lee, M. W. Cheon, and Y. P. Park, J. KIEEME, 24, 219 (2011).
  2. J. S. Park, B. S. Park, S. D. Kang, K. H. Yang, K. K. Lee, D. J. Lee, and K. M. Lee, J. Kor. Inst. Surf. Eng., 41, 88 (2008). https://doi.org/10.5695/JKISE.2008.41.3.088
  3. H. J. Kim, D. H. Cha, J. K. Lee, S. S. Kim, and J. H. Kim, J. KIEEME, 20, 720 (2007).
  4. A. T. Yi and A. Jain, J. Am. Ceram. Soc., 88, 579 (2005). https://doi.org/10.1111/j.1551-2916.2005.00137.x
  5. H. U. Kim, S. H. Jeong, Y, P. Park, S. S. Kim, H. J. Kim, and J. H. Kim, J. KIEEME, 19, 1050 (2006).
  6. C. Rincon, Surf. Coat. Technol., 148, 227 (2001).
  7. J. Robertson, Mater. Sci. Eng., 37, 129 (2002). https://doi.org/10.1016/S0927-796X(02)00005-0
  8. H. Hanya, S. Kamiya, Y. Murakami, and Y. Kondoh, Surf. Coat. Technol., 200, 1137 (2005). https://doi.org/10.1016/j.surfcoat.2005.02.022
  9. K. R. Lee and K. Y. Eun, Bull. Korean Inst. Met. Mater., 6, 345 (1993).
  10. G. M. Pharr, D. L. Callahan, S. D. McAdams, T. Y. Tsui, S. Anders, A. Anders, J. W. Ager Ⅲ, I. G. Brown, C. S. Bhatia, S. R. P. Silva, and J. Robertson, Appl. Phys. Lett., 68, 779 (1996). https://doi.org/10.1063/1.116530
  11. B. K. Tay, X. Shi, H. S. Tan, H. S. Yang, and Z. Sun, Surf. Coat. Technol., 105, 155 (1998). https://doi.org/10.1016/S0257-8972(98)00475-7