DOI QR코드

DOI QR Code

Antioxidant and Anti-Inflammatory Activities of Eugenol and Its Derivatives from Clove (Eugenia caryophyllata Thunb.)

정향(Eugenia caryophyllata Thunb.) Eugenol 및 그 유도체의 항산화 및 항염증활성

  • Leem, Hyun-Hee (Dept. of Food Science and Nutrition, Catholic University of Daegu) ;
  • Kim, Eun-Ok (Dept. of Food Science and Nutrition, Catholic University of Daegu) ;
  • Seo, Mi-Jae (Skylake Co.) ;
  • Choi, Sang-Won (Dept. of Food Science and Nutrition, Catholic University of Daegu)
  • 임현희 (대구가톨릭대학교 식품영양학과) ;
  • 김은옥 (대구가톨릭대학교 식품영양학과) ;
  • 서미자 (하늘호수) ;
  • 최상원 (대구가톨릭대학교 식품영양학과)
  • Received : 2011.06.16
  • Accepted : 2011.08.31
  • Published : 2011.10.31

Abstract

Antioxidant and anti-inflammatory activities of eugenol and its derivatives from clove (Eugenia caryophyllata Thunb.) were evaluated using in vitro assay systems by measuring 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, cyclooxygenase-2 (COX-2), and 15-lipoxygenase (15-LOX). Among eight different crude medicinal drugs tested, volatile extracts of clove extracted by steam distillation extraction (SDE) showed potent DPPH radical scavenging activity ($IC_{50}$=8.85 ${\mu}g/mL$) as well as strong inhibitory activity against COX-2 (58.15%) and 15-LOX (86.15%) at 10 ${\mu}g/mL$ and 25 ${\mu}g/mL$, respectively. Major volatile components of clove were identified as eugenol, trans-caryophyllene, and acetyleugenol by GC-MS analysis. Out of three eugenol derivatives, eugenol, methyl eugenol, and acetyl eugenol, eugenol showed the strongest DPPH radical scavenging activity and COX-2 inhibitory activity, whereas methyl eugenol exhibited the strongest 15-LOX inhibitory activity. Finally, the contents of the three eugenol derivatives in clove were quantified by analytical HPLC. Contents of eugenol and acetyl eugenol in clove were 6.95% and 1.85% per dry weight, respectively. These results suggest that eugenol and its derivatives in steam distilled extract of clove may be useful as potential antioxidant and anti-inflammatory agents.

본 연구는 한방스킨의 원료로 널리 사용되고 있는 8가지 생약의 휘발성증류추출액 중 항산화 및 항염증활성이 가장 강한 정향의 증류추출액으로부터 주된 향기성분을 SDE법으로 추출한 후 GC-MS로 확인하였으며, 주된 향기성분인 eugenol과 그 유도체를 합성한 후 항산화 및 항염증활성을 측정하고 비교하였으며, 아울러 HPLC를 이용하여 정향의 eugenol 및 그 유도체를 정량분석 하였다. 8가지 생약의 휘발성증류추출액 중 정향의 증류추출액이 가장 강한 항산화활성($IC_{50}$=8.85 ${\mu}g/mL$) 및 COX-2 저해활성(10 ${\mu}g/mL$ 농도에서 저해율은 58.15%)을 나타내었으며, 반면 15-LOX 저해 활성(25 ${\mu}g/mL$ 농도에서 저해율은 86.15%)은 당귀 다음으로 가장 높았다. 정향 증류추출액의 휘발성 향기성분을 SDE법으로 추출한 후 GC-MS를 이용하여 분석한 결과, eugenol, trans-caryophyllene 및 acetyl eugenol을 확인하였다. 한편, eugenol 및 그 유도체(methyl eugenol 및 acetyl eugenol)의 항산화 및 항염증 활성을 측정한 결과, eugenol($IC_{50}$=5.99 ${\mu}g/mL$)이 가장 높은 항산화활성을 나타낸 반면, methyl eugenol 및 acetyl eugenol은 거의 활성을 나타내지 않았다. COX-2의 경우 20 ${\mu}g/mL$ 농도에서 eugenol(85.35%)이 가장 강한 저해활성을 나타낸 반면, 15-LOX는 20 ${\mu}g/mL$ 농도에서 methyl eugenol(83.29%)이 가장 높은 저해활성을 나타내었다. 정향 에탄올추출물의 eugenol 및 유도체의 함량을 HPLC로 분석한 결과, eugenol 및 acetyl eugenol이 각각 6.95%, 1.85% 함유되어 있었으며 methyl eugenol은 검출되지 않았다. 이와 같이 정향 유래의 eugenol 및 그 유도체는 안전성이 문제시되고 있는 합성항산화제 및 항염증제를 대체할 수 있는 천연 유래의 항산화 및 항염증물질로서 잠재적 가치가 있어 향후 기능성식품, 화장품 및 의약품 소재로 널리 사용될 수 있을 것으로 생각된다.

Keywords

References

  1. Halliwell B, Gutteridge J. 1996. Free radicals, ageing, and disease. In Free Radicals in Biology and Medicine. Clarendon Press, London, UK. p 416-423.
  2. Emerit J, Chaudiere J. 2008. Free radicals and lipid peroxidation in cell pathology. In Handbook of Free Radicals and Antioxidants in Biomedicine. Miquel J, Quintanilha A, Weber H, eds. CRC Press, Boca Raton, FL, USA. Vol I, p 177-185.
  3. Nakatani N. 1990. Recent advances in the study on natural antioxidants. Nippon Shokuhin Kogyo Gakkaishi 37: 569-576. https://doi.org/10.3136/nskkk1962.37.7_569
  4. Giese J. 1996. Antioxidants: Tools for preventing lipid oxidation. Food Tech 11: 73-79.
  5. Branen AL. 1975. Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J Am Oil Chem Soc 52: 59-64. https://doi.org/10.1007/BF02901825
  6. Ito N, Fukushima S, Fukushima H. 1985. Carcinogenicity and modification of the carcinogenicity response by BHA and BHT, and other antioxidants. CRC Crit Rev Food Technol 15: 109-111.
  7. Liao JF, Chiou WF, Shen YC, Wang GJ, Chen CF. 2011. Anti-inflammatory and anti-infectious effects of Evodia rutaecarpa (Wuzhuyu) and its major bioactive components. Chinese Med 6: 1-8. https://doi.org/10.1186/1749-8546-6-1
  8. Hoshino T, Tabuchi K, Hara A. 2010. Effects of NSAIDs on the inner ear: possible involvement in cochlear protection. Pharmaceuticals 3: 1286-1295. https://doi.org/10.3390/ph3051286
  9. Rimon G, Sidhu R, Lauver D, Lee J, Sharma N, Yuan C, Frieler R, Trievel R, Lucchesi B, Smith W. 2010. Coxibs interfere with the action of aspirin by binding tightly to one monomer of cyclooxygenase-1. PNAS 107: 28-33. https://doi.org/10.1073/pnas.0909765106
  10. Anderson GD, Keys KL, Ciechi PAD, Masferrer JL. 2009. Combination therapies that inhibit cyclooxygenase-2 and leukotriene synthesis prevent disease in murine collagen induced arthritis. Inflamm Res 58: 109-117. https://doi.org/10.1007/s00011-009-8149-3
  11. Dogne JM, Hanson J, Supuran C, Pratico D. 2006. Coxibs and cardiovascular side-effects: from light to shadow. Curr Pharm Des 12: 917-975.
  12. Makins R, Ballinger A. 2003. Gastrointestinal side effects of drugs. Expert Opin Drug Saf 2: 421-429. https://doi.org/10.1517/14740338.2.4.421
  13. Wuik, CS, Moon YH, Lee GJ. 1994. Hankookbonchohak. Hyungseoul Publishing Co., Seoul, Korea. p 304.
  14. Wuik, CS, Moon YH, Lee GJ. 1994. Hankookbonchohak. Hyungseoul Publishing Co., Seoul, Korea. p 304.
  15. Lee OH, Jung SH, Son JY. 2004. Antimicrobial activity of clove extract by extraction solvents. J Korean Soc Food Sci Nutr 33: 494-499. https://doi.org/10.3746/jkfn.2004.33.3.494
  16. Kang SY, Kim TG, Park MS, Han HM, Jung KK, Kang JH, Moon AR, Kim SH. 1999. Inhibitory effects of Eugenia caryophyllate, Ephedra sinica and Cinnamomum cassia on the replication of HBV in HepG2 cells. J Appl Pharmacol 7: 133-137.
  17. Singh AK, Dhamanigi SS, Asad M. 2009. Anti-stress activity of hydroalcoholic extract of Eugenia caryophyllus buds (clove). Indian J Pharmacol 41: 28-31. https://doi.org/10.4103/0253-7613.48889
  18. Ito M, Murakami K, Yoshino M. 2005. Antioxidant action of eugenol compounds: role of metal ion in the inhibition of lipid peroxidation. Food Chem Toxicol 43: 461-466. https://doi.org/10.1016/j.fct.2004.11.019
  19. Oztuurk A, Ozbek H. 2005. The anti-inflammatory activity of eugenia caryophyllata essential oil: an animal model of anti-inflammatory activity. Eur J Gen Med 2: 159-163.
  20. Kaur G, Athar M, Alam M. 2010. Eugenol precludes cutaneous chemical carcinogenesis in mouse by preventing oxidative stress and inflammation and by inducing apoptosis. Mol Carcinog 49: 290-301.
  21. Wang C, Zhang J, Chen J, Fan Y, Shi Z. 2010. Antifungal activity of eugenol against Botrytis cinerea. Trop Plant Pathol 35: 137-143.
  22. Kim SH, Shin TY, Kim HY, Lee YM, Lee EH, Shin BK, Kim YC, An NH, Kim HM. 1996. Inhibition of immediate allergic reaction by eugenol. Yakhak Hoeji 40: 679-683.
  23. Schultz TH, Flath RA, Mon TR, Eggling SB, Teranishi R. 1977. Isolation of volatile components from a model system. J Agric Food Chem 25: 446-449. https://doi.org/10.1021/jf60211a038
  24. Sehagen ES, Abbrahansom F, Mclafferty W. 1974. The Wiley/NBS registry of mass spectral data. John Wiley and Sons, Ithaca, NY, USA. p 135
  25. Tagashira M, Ohtake Y. 1988. A new antioxidative 1,3-benzo-dioxole from Melisa offocinalis. Planta Med 64: 555-558.
  26. Lee KG, Takayuki S. 2001. Antioxidant property of aroma extract isolated from clove buds [Syzygium aomaticum (L.) Merr. et Perry]. Food Chem 74: 443-448. https://doi.org/10.1016/S0308-8146(01)00161-3
  27. Park MK, Park JH, Shin YG, Shin YK, Kim HH. 1997. Chemical constituents of Eugenia caryophyllata. Yakhak Hoeji 41: 149-152.
  28. Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28: 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  29. Masahiro O, Midori H, Shiro U, Toyoshige E. 2000. Antioxidant activity of eugenol and related monomeric and dimeric compounds. Chem Pharm Bull 48: 1467-1469. https://doi.org/10.1248/cpb.48.1467
  30. Baskaran Y, Periyasamy V, Venkatraman AC. 2010. Investigation of antioxidant, anti-inflammatory and DNA-protective properties iof eugenol in thioacetamide-induced liver injury in rats. Toxicology 268: 204-212. https://doi.org/10.1016/j.tox.2009.12.018
  31. Fujisawa S, Atsumi T, Kadoma Y, Sakagami H. 2002. Antioxidant and prooxidant action of eugenol-related compounds and their cytotoxicity. Toxicology 177: 39-54. https://doi.org/10.1016/S0300-483X(02)00194-4
  32. Park HJ. 2006. Toxicological studies on the essential oil of Eugenia caryophyllata Buds. Natural Product Sci 12: 94-100.
  33. Murakami Y, Shoji M, Hanazawa S, Tanaka S, Fujisawa S. 2003. Preventive effect of bis-eugenol, a eugenol ortho dimer, on lipopolysaccharide-stimulated nuclear factor kappa B activation and inflammatory cytokine expression in macrophages. Biochem Pharmacol 66: 1061-1066. https://doi.org/10.1016/S0006-2952(03)00419-2
  34. Murakami Y, Shoji M, Hirata A, Tanaka S, Yokoe I, Fujisawa S. 2005. Dehydrodiisoeugenol, an isoeugenol dimer, inhibits lipopolysaccharide-stimulated nuclear factor kappa B activation and cyclooxygenase-2 expression in macrophages. Arch Biochem Biophys 434: 326-332. https://doi.org/10.1016/j.abb.2004.11.013
  35. Magalhaes CB, Riva DR, Depaula LJ, Brando-Lima A, Koatz VLG, Leal-Cardoso JH, Zin WA, Faffe DS. 2010. In vivo anti-inflammatory action of eugenol on lipopolysaccharide-induced lung injury. J Appl Physiol 108: 845-851.
  36. An SM, Lee SI, Choi SW, Moon SW, Boo YC. 2008. $\rho$-Coumaric acid, a constituent of Sasa quelpaertensis Nakai, inhibits cellular melanogenesis stimulated by $\alpha$-melanocyte stimulating hormone. Brit J Dermatol 159: 292-299. https://doi.org/10.1111/j.1365-2133.2008.08653.x
  37. Dong S, Jung SH, Moon JS, Rhee SK, Son JY. 2004. Antioxidant activities of clove by extraction solvent. J Korean Soc Food Sci Nutr 33: 609-613. https://doi.org/10.3746/jkfn.2004.33.4.609

Cited by

  1. Comparison of Effect of Water and Ethanolic Extract from Roots and Leaves of Allium hookeri vol.43, pp.12, 2014, https://doi.org/10.3746/jkfn.2014.43.12.1808
  2. Investigation on mechanism of antifungal activity of eugenol againstTrichophyton rubrum vol.51, pp.5, 2013, https://doi.org/10.3109/13693786.2012.742966
  3. The Effects of Pharmacopuncture(Eugenia caryophyllata THUNB.) on the High Fat Diet-induced Obese ICR Mice vol.30, pp.3, 2013, https://doi.org/10.13045/acupunct.2013007
  4. The use of eugenol against Aeromonas hydrophila and its effect on hematological and immunological parameters in silver catfish (Rhamdia quelen) vol.157, pp.3-4, 2014, https://doi.org/10.1016/j.vetimm.2013.11.009
  5. Anti-Inflammatory Effects of Volatile Flavor Extracts from Cnidium officinale and Angelica gigas vol.41, pp.8, 2012, https://doi.org/10.3746/jkfn.2012.41.8.1057
  6. Anti-Inflammatory Effects of Extracts from Caesalpinia sappan L. on Skin Inflammation vol.42, pp.3, 2013, https://doi.org/10.3746/jkfn.2013.42.3.384
  7. Anti-inflammatory Activity of an Ethanol Extract of Laminaria japonica Root on Lipopolysaccharide-induced Inflammatory Responses in RAW 264.7 Cells vol.46, pp.6, 2014, https://doi.org/10.9721/KJFST.2014.46.6.729
  8. Chemical composition and biological activities of essential oil ofBeilschmiedia pulverulenta vol.54, pp.2, 2016, https://doi.org/10.3109/13880209.2015.1037003
  9. Synergistic antiradical action of natural antioxidants and herbal mixture for preventing dioxin toxicity vol.21, pp.2, 2012, https://doi.org/10.1007/s10068-012-0062-9
  10. Antioxidant Activities of Volatile Aroma Components from Cudrania tricuspidata (Carr.) Bureau Extracts vol.41, pp.11, 2012, https://doi.org/10.3746/jkfn.2012.41.11.1493
  11. Physiological activities of natural color powders and their mixtures vol.23, pp.1, 2016, https://doi.org/10.11002/kjfp.2016.23.1.80
  12. Anti-oxidant and Anti-inflammatory Activities of Barley Sprout Extract vol.26, pp.5, 2016, https://doi.org/10.5352/JLS.2016.26.5.537
  13. Eugenol—From the Remote Maluku Islands to the International Market Place: A Review of a Remarkable and Versatile Molecule vol.17, pp.6, 2012, https://doi.org/10.3390/molecules17066953
  14. essential oil, eugenol and semisynthetic derivatives pp.09337407, 2018, https://doi.org/10.1111/myc.12844
  15. Nutrigenomics of Essential Oils and their Potential Domestic Use for Improving Health vol.9, pp.11, 2011, https://doi.org/10.1177/1934578x1400901128
  16. 가지-청열소독음(淸熱消毒飮)의 항산화 및 항염 효능에 관한 연구 vol.43, pp.2, 2017, https://doi.org/10.15230/scsk.2017.43.2.125
  17. 버드나무(Salix Koreensis Andersson) 가지 추출물의 항산화 및 항염증 효과 vol.33, pp.2, 2011, https://doi.org/10.7318/kjfc/2018.33.2.104
  18. Anti-oxidative and Anti-inflammatory Effects of Codonopsis lanceolata Skin Extracts vol.16, pp.3, 2011, https://doi.org/10.20402/ajbc.2018.0217
  19. Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities vol.10, pp.2, 2011, https://doi.org/10.3390/biom10020202
  20. Suggestions on the Contribution of Methyl Eugenol and Eugenol to Bay Laurel (Laurus nobilis L.) Essential Oil Preservative Activity through Radical Scavenging vol.26, pp.8, 2011, https://doi.org/10.3390/molecules26082342
  21. Phytochemical compounds identification of three bajakah species (Salacia sp., Uncaria acida, and Uncaria gambir) using GC-MS pyrolysis vol.762, pp.1, 2021, https://doi.org/10.1088/1755-1315/762/1/012043
  22. Propolis and Its Gastroprotective Effects on NSAID-Induced Gastric Ulcer Disease: A Systematic Review vol.13, pp.9, 2011, https://doi.org/10.3390/nu13093169
  23. Eugenol, a Promising Building Block for Biobased Polymers with Cutting-Edge Properties vol.22, pp.9, 2011, https://doi.org/10.1021/acs.biomac.1c00837