DOI QR코드

DOI QR Code

${\alpha}$-Glucosidase Inhibitory Substances Exploration Isolated from the Herb Extract

생약재 추출물로부터 분리한 ${\alpha}$-Glucosidase 저해활성물질 탐색

  • Choi, Gil-Yong (Department of Confectionary and Decoration, Daegu Mire College) ;
  • Han, Gab-Jo (Division of Food Service Industry, Uiduk University) ;
  • Ha, Sang-Chul (Department of Confectionary and Decoration, Daegu Mire College)
  • 최길용 (대구미래대학교 제과데코레이션과) ;
  • 한갑조 (위덕대학교 외식산업학부) ;
  • 하상철 (대구미래대학교 제과데코레이션과)
  • Received : 2011.01.26
  • Accepted : 2011.07.22
  • Published : 2011.08.30

Abstract

This is a part of the study on the food materials that are effective for diabetes treatment and for use in the development of functional bread products. In this study, various commercially available Oriental medicines with the intestinal absorption enzyme called ${\alpha}$-glucosidase, which is known to be effective for diabetes treatment, were explored. According to the research results on the water and methanol in 200 kinds of Oriental medicines, which were separated by layer to investigate the inhibitory activity of ${\alpha}$-glucosidase, Astragalus membranaceus (70.9%) in the water layer and Pericaeta communissima (72.9%) in the MeOH layer showed a strong inhibitory effect of over 70%. Myristica fragrans (69%), Morus alba (66.9%), Schisandra chinensis (65%), Panax notoginsens (63.9%), Anthriscus sylvestris (62.9%), Asparagus cochinchinensis (62.1%), Erycibe obtusifolia (60.9%), Polygonum cuspidatum (60.7%), Atractylodes lancea (60.2%), and Perilla frutescens (60.2%) in the water layer, and Codonopsis pilosula (67.8%), Prunus persica batsch (67.6%), Sinomenium acutum (63.5%), and Malvae semen (61.6%) in the MeOH layer, showed a more than 60% inhibitory effect. Thirty one species, including Polygonatum sibiricum (59.8%), Medicata fementata (59.7%), Alisma canaliculatum (59.5%), Coix lacryma-jobi (59.2%), Asiasarum sieboldi (59.0%), and Bupleurum falcatum (53.0%), in the water layer, and 10 species [Quisqualis indica (58.8%), Lycium chinense (58.3%), Trichosanthes kirilowii (58.0%), Thuja orientalis (55.9%), Bombyx mori (55.6%), Gallus domesticus (55.4%), Aralia continentalis (55.3%), Cibotium barometz (52.7%), Euphorbia pekinensis (52.7%), and Dolichos lablab (52.5%)] in the MeOHlayer, showed a more than 50% inhibitory effect. Therefore, such materials are expected to be the basic materials that will be used for the development of functional materials for diabetes treatment.

당뇨병에 효과가 있는 식품소재의 탐색과 그 소재를 이용한 기능성 빵제품 개발에 관한 연구의 일환으로 당뇨병에 효과가 있다고 알려진 소장흡수 저해효소인 ${\alpha}$-glucosidase를 target로 시중에 유통되는 다양한 생약재를 대상으로 탐색을 하였다. ${\alpha}$-Glucosidase 저해활성을 조사하고자 생약재 200여종을 대상으로 물층과 메탄올 층으로 구분하여 탐색한 결과 물층에서는 황기(70.9%)가, MeOH층에서는 구인(72.9%)이 70%이상의 강력한 저해효과를 나타났으며 60%이상으로는 물층에서는 육두구(69%), 상백피(66.9%), 오미자(65%), 삼칠(63.9%), 전호(62.9%), 천문동(62.1%), 정공등(60.9%), 호장근(60.7%), 창출(60.2%), 소자(60.2%)등 이었으며, MeOH층으로는 만삼(67.8%), 도인(67.6%), 방기(63.5%), 동규자(61.6%) 순으로 활성효과를 나타내었으며 50%이상의 저해효과를 보인 것으로는 물층에서는 황정(59.8%), 신곡(59.7%), 택사(59.5%), 의인(59.2%), 세신(59.0%), 시호(53.0%)를 포함한 31여종, MeOH층에서는 사군자(58.8%), 구기자(58.3%), 과루인(58.0%), 백자인(55.9%), 백강잠(55.6%), 계내금(55.4%), 독활(55.3%), 구척(52.7%), 대극(52.7%), 백편두(52.5%) 10종이 저해효과를 나타내었다. 따라서 당뇨병 환자의 기능성 소재로 개발하는데 기초 자료가 될 것으로 기대된다.

Keywords

References

  1. Kim IS, Ju EJ, Lee KJ, Park ES (2003) Clinical nutrition and dietetic treatment, Hyoil, p 259
  2. Korean Center for disease control and Prevention. the fourth Korea National Health and Nutrition Examination Survey KNHANES IV-2 (2009). Seoul: Korea Centers for Disease Control and Prevention
  3. Park YM, Sohn CM, Jang HC (2005) A study on status subjective recogniti on of functional foods among diabetic patients. J Korean Diet Assoc, 11, 216-222
  4. Park YM (2010) Proper nutrition for diabetes patients dietitan, chonbuk national university hospital, jeonju, Korea. Korean Clinical Diabetes J, 11, 303-308
  5. Xiang Z, He F, Kang TG, Dou DQ, Gai K, Shi YY, Kim YH, Dong F (2010) Anti-dia betes constituents in leaves of Smallanthus sonchifolius. Nat Prod Commun, 5, 95-98
  6. Pyorala K, Laakso M, Uusitupa M (1987) Diabetes and atherosclerosis: an epidem iolo gic view. Diabetes Metab Rev, 3, 463-524 https://doi.org/10.1002/dmr.5610030206
  7. Fiordaliso M, Kok N, Desager JP, Goethals F, Deboyser D, Roberfroid M, Delzenne N (1995) Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very iow density lipoproteins of rats. Lipids, 30, 163-167 https://doi.org/10.1007/BF02538270
  8. Yoon JW, Rhee SK, Lee KB (2005) Effects of silkworm extract powder on plasma lipids and glucose rats. Korean J Food Nutr, 18, 140-145
  9. Lee HA, Sim HS, Choi KJ, Lee HB (1998) Hypoglycemic action of red ginseng components(II):Investigation of the effect of fat soluble fraction from red ginseng on enzymes related to glucose metabolism in cultured rat hapatocytes. Korean J Ginseng Sci, 22, 51-59
  10. Kim SH, Ryu DS, Lee MY, Kim KH, Kim YH, Lee DS (2008) Antidiabetic activity of polysaccharide on salicornia herbacea. Korean J Microbiol Biotechnol, 36, 43-48
  11. Puls W, Keup U (1973) Influence of an ${\alpha}-amylase$ inhibitor (Bay d7791) on blood glucose, serum insulin and NEFF in starch loading tests in rats, dogs and man. Diabetologia, 9, 97-101 https://doi.org/10.1007/BF01230687
  12. Puls HP, Krause L, Muller H, Schutt R, Thomas G (1984) Inhibitors of the rate of carbohydrate and lipid absorption by the intestine. Int J Obes, 8, 181-190
  13. Toeller M, Klischan A, Heitkamp G, Schumacher W, Milne R, Buyken A, Karam anos B, Gries FA, the EURODIAB IDDM Complications Study Group (1996) Nutritional intake of 2868 IDDM patients from 30 centres in Europe. Diabetologia, 39, 929-939 https://doi.org/10.1007/BF00403912
  14. McCue P, Shetty K (2004) Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylas in vitro. Asia Pac J Clin Nutr, 13, 101-106
  15. Del Prato, S Bianchi C, Marchetti P (2007) Beta-cell function and anti-diabetic pharmacotherapy. Diabetes Metab Res Rev, 23, 518-527 https://doi.org/10.1002/dmrr.770
  16. Van de Laar, F A Lucassen, P L Akkermans, R P Van de Lisdonk E H. D Grauw WJ (2009) Alpha-glucosidase inhibitors for prople with impaired glucose tolerance or impaired fasting blood glucose. Cochrane Database Syst Rev, 18, CD005061
  17. Tibbot BK, Skadsen RW (1996) Molecular cloning and characterization of a gibberellin-inducible, putative ${\alpha}-glucosidasc$ gene from berley. Plant Mol Biol, 30, 229-241 https://doi.org/10.1007/BF00020110
  18. Nam MS, Kim KR, Cho JH, Lee KM, Park HY, Lee EJ, Lim SK, Lee HC, Huh KB (1994) A study on the folk remedies by the questionnaries in Korean diabetic patients. Diabetes, 18, 242-248
  19. Mitsunnaga T. Abe L, Kontani M, Ono H, Tanaka T (1997) Inhibitory effects of bark proanthocynaidins on the activities of glucosyltransferases of streptococcus sobr inus. L. Wood Shem. Korean J Food & Nutr, 17, 327-340
  20. Lee WY, Ahn JK, Park YK, Rhee HI (2004) Inhibitory effects of proanthocyanidin extracted from distylium racemosum on ${\alpha}-amylase$ and ${\alpha}-glucosidase$ Activities. Kor J Pharmacogn, 35, 271-275
  21. Kang TH, Choi SZ, Lee TH, Son MW, Kim SY (2008) Characteristics of antidia betic effect of dioscorea rhizoma (1). Korean J Food & Nutr, 21, 425-429
  22. Shin Je, Han MJ, Lee IK, Mon YI, Kim DH (2003) Hypoglycemic activity of opuntia ficus-indica var. sabotan on Alloxan or Streptozotocin-Induced Diabetic Mice. Kor J Pharmacogn, 34, 75-79
  23. Hikino H, Mizuno T, Oshima Y, Konno C (1985) Isolation and hypoglycemic acticity of Moran A, a glycoprotein of Morus Alba Root Barks. Planta Medica, 159-162
  24. Kimura M, Chen FJ, Nakashima N, Kimura I, Asano N, Koya S (1995) Antihyper glycemic effects of N-containing sugers derived from Mulberry leaves in strepto-zotocininduced diabetic mice. J Trad Med, 12, 214-219
  25. Noh JH, Kim YJ, Kim SW, Lee JH, Lee HY (2003) Comparison of biological activities of Epimedium Koreanum Nakai Produced in Korea and China. Korean J Medicinal Crop Sci, 11, 195-200
  26. Kim JH, Kim MU, Cho YJ (2007) Isolation and identification of inhibitory compound from crataegi fructus on ${\alpha}-glucosidase$. J. Korean soc Appl Biol Chem, 50, 204-209
  27. Cha MR, Park JH, Choi YH, Choi CW, Hong KS, Choi SU (2009) Alpha-glucosidase inhibitors from the branches extract of cotinus coggygria. Kor J Pharmacogn, 40, 229-232
  28. Kim DH, Choi HJ, Bae EA, Hsn MJ, Park SY (1998) Effect of Artificially cultured phellinus linteus on harmful intestinal bacterial enzymes and rat intestinal ${\alpha}-glucosida$ ses. J Fd Hyg Safety, 13, 20-23

Cited by

  1. Anti-diabetic and Anti-oxidative activities of Extracts from Crataegus pinnatifida vol.25, pp.2, 2015, https://doi.org/10.17495/easdl.2015.4.25.2.270
  2. The Literature Study of Research Trend of Alismatis Rhizoma and Relationship Between the Herbology and KCD vol.31, pp.2, 2016, https://doi.org/10.6116/kjh.2016.31.2.47.
  3. 약용식물 물 추출물의 항산화 활성 및 α-Glucosidase 저해효과 vol.21, pp.3, 2013, https://doi.org/10.7783/kjmcs.2013.21.3.197
  4. Effect of E-Beam Irradiation on Microbial Load, Stability of Active Components, and Anti-Inflammatory Activity of Cnidii Rhizoma and Alismatis Rhizoma vol.22, pp.10, 2019, https://doi.org/10.1089/jmf.2019.4429