DOI QR코드

DOI QR Code

Earthquake Wave Propagation Using Staggered-grid Finite-difference Method in the Model of the Antarctic Region

엇격자 유한차분법을 이용한 극지해역 지진파 모델링

  • Oh, Ju-Won (Department of Energy Systems Engineering, Seoul National University) ;
  • Min, Dong-Joo (Department of Energy Systems Engineering, Seoul National University) ;
  • Lee, Ho-Yong (New Ventures & Exploration Group, Korean Ocean Oil Corporation) ;
  • Park, Min-Kyu (Division of Polar Earth-System Sciences, Korea Polar Research Institute)
  • 오주원 (서울대학교 공과대학 에너지시스템공학부) ;
  • 민동주 (서울대학교 공과대학 에너지시스템공학부) ;
  • 이호용 (한국석유공사 신규사업처) ;
  • 박민규 (극지연구소 극지지구시스템연구부)
  • Received : 2011.06.22
  • Accepted : 2011.09.14
  • Published : 2011.10.31

Abstract

We simulate the propagation of earthquake waves in the continental margin of Antarctica using the elastic wave modeling algorithm, which is modified to be suitable for acoustic-elastic coupled media and earthquake source. To simulate the various types of earthquake source, the staggered-grid finite-difference method, which is composed of velocity-stress formulae, can be more appropriate to use than the conventional, displacement-based, finite-difference method. We simulate the elastic wave propagation generated by earthquakes combining 3D staggered-grid finite-difference algorithm composed of displacement-velocity-stress formulae with double couple mechanisms for earthquake source. Through numerical tests for left-lateral strike-slip fault, normal fault and reverse fault, we could confirm that the first arrival of P waves at the surface is in a good agreement with the theoretically-predicted results based on the focal mechanism of an earthquake. Numerical results for a model made after the subduction zone in the continental margin of Antarctica showed that earthquake waves, generated by the reverse fault and propagating through the continental crust, the oceanic crust and the ocean, are accurately described.

이 연구에서는 기존의 탄성파 모델링 알고리즘에 지진 송신원을 적용하고, 음향-탄성파 결합 매질을 구현하여 남극대륙 주변과 같은 극지해역에서 발생할 수 있는 지진파의 거동을 모사한다. 기존의 변위근사 유한차분법과 달리 속도-응력 식으로 구성되는 엇격자 유한차분법의 경우 다양한 송신원을 구현하는데 적합하므로 변위-속도-응력 식에 기초하여 개발된 3차원 엇격자 유한차분법 알고리즘과 이중 우력(Double Couple Forces)을 이용하여 구현한 지진 송신원을 접목시켜 지진파의 거동을 모사한다. 좌수향 주향이동단층, 정단층, 역단층 형태의 지진 송신원에 대해서 개발된 알고리즘을 검증한 결과 이론적으로 예측되는 P파의 초동을 정확히 모사할 수 있었고, 섭입대 모델에 대한 수치모형실험 결과 섭입대에서 역단층에 의해 발생된 후 대륙지각, 해양지각 및 해양에서 전파되는 지진파의 거동양상이 정확하게 모사되는 것을 확인할 수 있었다.

Keywords

References

  1. 백진주, 경재복, 최호선, 2011, 최근 5년간 한반도 중서부 지역에서 발생한 지진의 진원 특성 분석. 한국지구과학회, 32, 161-169. https://doi.org/10.5467/JKESS.2011.32.2.161
  2. 신성렬, 신창수, 서정희, 1997, Staggered Grid를 이용한 유한차분법 탄성파 모델링. 한국자원공학회지, 34, 168-174.
  3. 양준모, 이희순, 오석훈, 2009, 청양 지자기관측소에서 획득된 지자기전달함수와 분극값의 시간변동성에 대한 연구. 한국지구과학회, 30, 824-833. https://doi.org/10.5467/JKESS.2009.30.7.824
  4. 오석훈, 2009, 안동지진(2009년 5월 2일) 발생 기간 지자기장 자료의 변동성 분석. 한국지구과학회, 30, 683-691. https://doi.org/10.5467/JKESS.2009.30.6.683
  5. 조창수, 이희일, 2009, 회전된 엇갈린 격자를 이용한 탄성파 모델링에의 CPML 경계조건 적용. 지구물리와 물리탐사, 12, 183-191.
  6. 최윤석, 2007, 탄성파 및 음향-탄성파 결합 파동방정식 유한요소 모델링 기법을 이용한 주파수 영역 파형역산. 서울대학교 공학박사학위논문, 118 p.
  7. Adamova, P. and Sileny, J., 2010, Non-double-couple earthquake mechanism as an artofact of the point-source approach applied to a finite-extent focus. Bulletin of the Seismological Society of America, 100, 447-557. https://doi.org/10.1785/0120090097
  8. Aki, K. and Richards, G.P., 1980, Quantitative seismology. University Science Books Sausalito, California, USA, 700 p.
  9. Clayton, R. and Engquist, B., 1977, Absorbing boundary conditions for acoustic and elastic wave equations. Bulletin of the Seismological Society of America, 67, 1529-1540.
  10. Fornberg, B., 1987, The pseudospectral method: Comparisons with finite differences for the elastic wave equation. Geophysics, 52, 483-501. https://doi.org/10.1190/1.1442319
  11. Fulbert, F., Meister, C., Hauf, S., Bonnes, U., Dziendziel, P., and Hoffmann, D.H., 2011, The Darmstadt VLF radiophysical station VADAR for the detection of possible earthquake precursors. EGU General Assembly, 13, p. 2713.
  12. Gaspar-Escibano, J.M. and Iturrioz, T., 2011, Communicating earthquake risk: Mapped parameters and cartographic representation. Natural Hazards and Earth System Sciences, 11, 359-366. https://doi.org/10.5194/nhess-11-359-2011
  13. Graves, W.R., 1996, Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bulletin of the Seismological Society of America, 86, 1091-1106.
  14. Kelly, K.R., Ward, T.W., Treitel, S., and Alford, T.M., 1976, Synthetic seismograms: A finite-difference approach. Geophysics, 53, 1045-1055.
  15. Kosloff, D.D. and Baysal, E., 1982, Forward modeling by a Fourier method. Geophysics, 47, 1402-1412. https://doi.org/10.1190/1.1441288
  16. Lee, H.Y., Lim, S.C., Min, D.J., Kwon, B.D., and Park, M.K., 2009, 2D time-domain acoustic-elastic coupled modeling: A cell-based finite-difference method. Geoscience journal, 13, 407-414. https://doi.org/10.1007/s12303-009-0037-x
  17. Levander, A.R., 1988, Fourth-order finite-difference P-SV seismograms. Geophysics, 53, 1425-1436. https://doi.org/10.1190/1.1442422
  18. Lin, T. and Baker, J., 2011, Probabilistic seismic hazard deaggregation of ground motion prediction models. 5th International Conference on Earthquake Geotechnical Engineering(5ICEGE), 1-12.
  19. Marfurt, K.J., 1984, Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equation. Geophysics, 49, 533-549. https://doi.org/10.1190/1.1441689
  20. Min, D.J., Shin, C.S., and Yoo, H.S., 2004, Free-surface boundary condition in finite-difference elastic wave modeling. Bulletin of the Seismological Society of America, 94, 237-250. https://doi.org/10.1785/0120020116
  21. Moczo, P., Kristek, J., and Bystricky, E., 2000, Stability and grid dispersion of the P-SV 4th-order staggered-grid finite-difference schemes. Studia geoph et geodaet, 44, 381-402. https://doi.org/10.1023/A:1022112620994
  22. Mussett, E.A. and Khan, M.A., 2000, Looking into the Earth: An introduction to geological geophysics. Cambridge University Press, NY, USA, 470 p.
  23. Narayan, J.P. and Kumar, S., 2008, A fourth order accurate SH-wave staggered grid finite-difference algorithm with variable grid size and VGR-stress imaging technique. Pure and Applied Geophysics, 165, 271-294. https://doi.org/10.1007/s00024-008-0298-8
  24. Reynolds, C.A., 1978, Boundary conditions for the numerical solution of wave propagation problems. Geophysics, 43, 1099-1100. https://doi.org/10.1190/1.1440881
  25. Silva, H.G., Bezzeghoud, M., Rocha, J.P., Biagi, P.F., Tlemcani, M., Rosa, R.N., Salgueiro da Silva, M.A., Borges, J.E., Caldeira, B., Reis, A.H., and Manso, M., 2011, Seismo-electromagnetic phenomena in the westerm part of the Eurasia-Nubia plate boundary. Natural Hazards and Earth System Sciences, 11, 241-248. https://doi.org/10.5194/nhess-11-241-2011
  26. Stein, S. and Michael, W., 2003, An introduction to seismology, earthquakes, and earth structure. Blackwell Publishing, Malden, USA, 498 p.
  27. Symons, N.P., Aldridge, D.F., and Haney, M.M., 2006, 3d acoustic and elastic modeling with marmousi2, 76th Annual International Meeting, SEG, Expanded Abstract, 2171-2175.
  28. Virieux, J., 1984, SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics, 49, 1933-1942. https://doi.org/10.1190/1.1441605
  29. Virieux, J., 1986, P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics, 51, 889-899. https://doi.org/10.1190/1.1442147
  30. Yunga, S., Lutikov, A., and Molchanov, O., 2005, Non double couple seismic sources, faults interaction and hypothesis of self-organized criticality. Natural Hazards and Earth System Sciences, 5, 11-15. https://doi.org/10.5194/nhess-5-11-2005