DOI QR코드

DOI QR Code

Anti-Inflammatory Effects of Volatile Flavor Extract from Herbal Medicinal Prescriptions Including Cnidium officinale Makino and Angelica gigas Nakai

천궁 및 당귀를 함유한 한방처방제 휘발성 향기추출물의 항염증 효과

  • Leem, Hyun-Hee (Department of Food Science and Nnutrition, Catholic University of Daegu) ;
  • Kim, Eun-Ok (Department of Food Science and Nnutrition, Catholic University of Daegu) ;
  • Seo, Mi-Jae (Skylake, Co.) ;
  • Choi, Sang-Won (Department of Food Science and Nnutrition, Catholic University of Daegu)
  • 임현희 (대구가톨릭대학교 식품영양학과) ;
  • 김은옥 (대구가톨릭대학교 식품영양학과) ;
  • 서미자 (하늘호수) ;
  • 최상원 (대구가톨릭대학교 식품영양학과)
  • Received : 2011.06.22
  • Accepted : 2011.09.16
  • Published : 2011.09.30

Abstract

This study was conducted to develop functional sources of herbal cosmetics for treatment of skin aging and inflammatory disorders using volatile flavor extracts of four different herbal medicinal prescriptions including Cnidium officinale Makino (COM), Angelica gigas Nakai (AGN), Mentha arvense L. (MAL), Artemisiae argyi Folium (AAF), Paeonia lactiflora Pall (PLP), Rehmanniae Radix Preparata (RRP), Scutellaria baicalensis Georgi (SBG), Panax ginseng C.A. Meyer (PGM), Glycyrrhiza uralensis Fisch (GUF). The volatile flavor extracts of four different herbal medicinal prescriptions (HH-1: COM, AGN, PLP, RRP, HH-2: COM, AGN, PLP, RRP, SBG, PGM, GUF, HH-3: COM, AGN, MAL, AAF, HH-4: COM, AGN, MAL, AAF, SBG, PGM, GUF) were extracted using SDE and their antioxidant and anti-inflammatory effects were measured by using DPPH radical and SLO, respectively. As a result, HH-2 showed moderate DPPH radical scavenging activity (68.24 %) and the strongest SLO inhibitory activity (83.96 %) at 100 ${\mu}g$/mL. Moreover, HH-2 of four different prescriptions significantly inhibited NO production on LPS-stimulated RAW 264.7 cells in a dose-dependent manner without considerable cell cytotoxicity at range of 2.0 ~ 50 ${\mu}g$/mL. Additionally, HH-2 also effectively suppressed the production of $PGE_2$ and IL-6, which are responsible for promoting the inflammatory process. Major volatile components of HH-2 were identified as eugenol, paeonol, butyl phthalide, ${\beta}$-eudesmol and butylidene dihydrophthalide by GC-MS analysis. Thus, these results suggest that HH-2 may be useful as a potential source of anti-inflammatory agents in herbal medicinal cosmetics.

본 연구는 항염증 효능을 가지는 한방처방제 휘발성 향기추출물을 이용하여 염증질환 치료 한방화장품 기능성 소재를 개발하고자 하였다. 먼저 전보에서 항염증 효능이 있는 것으로 알려진 천궁, 당귀, 박하 및 애엽을 비롯하여 5가지 생약(적작약, 숙지황, 황금, 인삼 및 감초)으로 구성된 4가지 한방처방제(HH-1: 천궁, 당귀, 적작약, 숙지황, HH-2: 천궁, 당귀, 적작약, 숙지황, 황금, 인삼, 감초, HH-3: 천궁, 당귀, 박하, 애엽, HH-4: 천궁, 당귀, 박하, 애엽, 황금, 인삼, 감초)를 선정한 후 연속수증기증류법(simultaneous steam distillation extraction, SDE)을 이용하여 추출한 휘발성 향기추출물의 항산화 및 항염증 활성을 1,1-diphenyl-2-picrylhydrazyl (DPPH) 및 soybean lipoxygenase (SLO)를 이용하여 각각 측정한 결과, HH-2가 다소 높은 항산화 활성뿐 아니라 SLO 저해활성이 가장 높게 나타났다. 따라서 항염증 활성이 강한 HH-2의 항염증 효능을 보다 상세하게 확인하기 위해 lipopolysaccharide (LPS) 유발한 RAW 264.7 세포를 이용하여 염증 유발매개인자인 nitric oxide (NO)와 prostaglandin $E_2$ ($PGE_2$) 및 interleukin-6 (IL-6) 생성 억제효과를 측정한 결과, HH-2가 강한 NO 생성 억제 효과뿐 아니라 $PGE_2$ 및 IL-6를 강하게 억제하여 우수한 항염증 활성을 나타내었다. 항염증 활성이 높은 HH-2의 휘발성향기성분을 GC-MS로 분석한 결과, eugenol, paeonol, butyl phthalide, ${\beta}$-eudesmol 및 butylidene dihydrophthalide로 확인되었다. 이러한 연구결과로부터 항산화뿐만 아니라 항염증활성이 높은 HH-2를 피부노화 및 염증질환 치료용 한방화장품의 기능성 소재 개발 가능성을 확인하였다.

Keywords

References

  1. S. S. Jew, O. N. Bae, and J. H. Chung, Anti-inflammatory effects of asiaticoside on inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 cell line, J. Toxicol. Pub. Health, 19, 33 (2003).
  2. M. Higuchi, N. Higashi, H. Taki, and T. Osawa, Cytolytic mechanism of activated macrophages. tumor necrosis factor and L-arginine dependent mechanism acts as synergistically as the major cytolytic mechanism of activated macrophages, J. Immunol., 144, 1425 (1990).
  3. D. E. Lee, J. R. Lee, T. W. Kim, Y. K. Kwon, S. H. Byun, S. W. Shin, S. I. Suh, T. K. Kwon, J. S. Byun, and S. C. Kim, Inhibition of lipopolysaccharide- inducible nitric oxide synthase, TNF-$\alpha$, IL-1$\beta$ and COX-2 expression by flower and whole plant of Lonicera japonica, Korean J. Oriental Physiology & Pathology, 19, 481 (2005).
  4. Y. P. Cheon, M. L. Mollah, C. H. Park, J. H. Hong, G. D. Lee, J. C. Song, and K. S. Kim, Inhibition effects of water extract of Bulnesia sarmienti on inflammatory responce in LPS-induced RAW 264.7 cell line, J. Life Science, 19, 479 (2009). https://doi.org/10.5352/JLS.2009.19.4.479
  5. M. K. Yoon, A. Choi, I. H. Cho, M. J. You, J. W. Kim, M. S. Cho, J. M. Lee, and Y. S. Kim, Characterization of volatile components in Eoyuk-jang, Korean J. Food Sci. Technol., 39(4), 366 (2007).
  6. M. K. Yoon, M. J. Kwon, S. M. Lee, J. W. Kim, M. S. Cho, J. M. Lee, and Y. S. Kim, Characterization of volatile components according to fermentation periods in Gamdongchotmoo Kimchi, Korean J. Food Sci. Technol., 40(5), 497 (2008).
  7. G. A. Reineccius, Flavour-isolation techniques. In flavours and fragrances: Chemistry, bioprocessing and sustainability, berger RG, ed., 409, Springer-Verlag, Heidelberg (2007).
  8. K. S. Yun, J. H. Hong, and Y. H. Choi, Characteristics of Elsholtzia splendens extracts on simultaneous steam distillation extraction conditions, Korean J. Food Preserv., 13, 623 (2006).
  9. J. G. Lee, H. J. Jang, J. J. Kwang, and D. W. Lee, Comparison of the volatile components of Korean ginger (Zingiber Officinale Roscoe) by different extraction methods, Korean J. Food Nutr., 13, 66 (2000).
  10. C. L. Arthur, L. M. Killam, K. D. Buchholz, J. Pawliszyn, and J. R. Berg, Automation and aptimization of solid-phase microextraction, Anal. Chem., 64, 1960 (1992). https://doi.org/10.1021/ac00041a034
  11. K. S. Nam, O. L. Son, K. H. Lee, H. J. Cho, and Y. H. Shon, Effect of Cnidii rhizoma on proliferation of breast cancer cell, nitric oxide production and ornithine decarboxylase activity, Kor. J. Pharmacogn., 35(4), 283 (2004).
  12. S. H. Kim and I. C. Kim, Antioxidant properties and whitening effects of the Eucommiae cortex, Salviae miltiorrhizae Radix, Aurantii nobilis pericarpium and Cnidii rhizoma, J. East Asian Soc. Dietary Life, 18(4), 618 (2008).
  13. J. H. Lee, H. S. Choi, M. S. Chung, and M. S. Lee, Volatile flavor components and free radical scavenging activity of Cnidium officinale, Korean J. Food Sci. Technol., 34(2), 330 (2002).
  14. Y. Y. Lee, S. H. Lee, J. L. Jin, and H. S. Yun-Choi, Platelet anti-aggregatory effects of coumarins from the roots of Angelica genuflexa and A. gigas, Arch. Pharm. Res., 26(9), 723 (2003). https://doi.org/10.1007/BF02976681
  15. G. S. Kim, C. G. Park, T. S. Jeong, S. W. Cha, N. I. Baek, and K. S. Song, ACAT(Acyl-CoA:cholesterol acyltransferase) inhibitory effect and quantification of pyranocurmarin in different parts of Angelica gigas Nakai, J. Appl. Biol. Chem., 52(4), 187 (2009). https://doi.org/10.3839/jabc.2009.032
  16. M. Konoshima, H. J. Chi, and K. Hata, Coumarins from the root of Angelica gigas Nakai, Chem. pharm. Bull., 16, 1139 (1968). https://doi.org/10.1248/cpb.16.1139
  17. S. Y. Kang and Y. C. Kim, Neuroprotective coumarins from the root of Angelica gigas: structure- activity relationships, Arch. Pharm. Res., 30, 1368 (2007). https://doi.org/10.1007/BF02977358
  18. S. B. Han, Y. H. Kim, C. W. Lee, S. M. Park, H. Y. Lee, K. S. Ahn, I. H. Kim, and H. M. Kim, Characteristic immunostimulation by angelan isolated from Angelica gigas Nakai, Immunopharmacol., 40, 39 (1998). https://doi.org/10.1016/S0162-3109(98)00026-5
  19. S. A. Kang, J. A. Han, K. H. Jang, and R. W. Choue, DPPH radical scavenger activity and antioxidant effects of Cham-Dang-Gui(Angilica gigas), J. Korean Soc. Food Sci. Nutr., 33, 1112 (2004). https://doi.org/10.3746/jkfn.2004.33.7.1112
  20. K. W. Park, S. R. Choi, M. Y. Shon, I. Y. Jeong, K. S. Kang, S. T. Lee, K. H. Shim, and K. I. Seo, Cytotoxic effects of decursin from Angelica gigas NaKai in human cancer cells, J. Korean. Soc. Food Sci. Nutr., 36, 1385 (2007). https://doi.org/10.3746/jkfn.2007.36.11.1385
  21. S. Shin, J. H. Jeon, D. Park, J. Y. Jang, S. S. Joo, B. Y. Hwang, S. Y. Choe, and Y. B. Kim, Anti-inflammatory effects of and ethanol extract of Angelica gigas in a carrageenan-airpouch inflammation model, Exp. Anim., 58, 431 (2009). https://doi.org/10.1538/expanim.58.431
  22. H. M. Kim, J. S. Kang, S. K. Park, K. Lee, J. Y. Kim, Y. J. Kim, J. T. Hong, Y. Kim, and S. B. Han, Antidiabetic activity of angelan isolated from Angelica gigas Nakai, Arch. Pharm. Res., 31, 1489 (2008). https://doi.org/10.1007/s12272-001-2135-9
  23. H. H. Leem, Y. J. Lee, E. O. Kim, W. J. Lee, M. J. Seo, and S. W. Choi, Anti-inflammatory activity of volatile extract of Cnidium officinale and Angelica gigas, Annual Meeting of Korean Society of Food Sci & Technology, Daegu, P11-140 (2011).
  24. M, Kubo and A, Yoshikawa, Herbal medicine ․ crude drug, Hirokawa Publishing Co., Tokyo, Japan (2003).
  25. T. H. Schultz, R. A. Flath, T. R. Mon, S. B. Eggling, and R. Teranishi, Isolation of volatile components from a model system, J. Agric. Food Chem., 25, 446 (1977). https://doi.org/10.1021/jf60211a038
  26. E. S. Sehagen, F. Abbrahansom, and W. Mclafferty, The Wiley/NBS registry of mass spectral data, John Wiley and Sons, NY, USA (1974).
  27. M. Tagashira and Y. Ohtake, A new antioxidative 1,3-benzo-dioxole from Melisa offocinalis, Planta Med., 64, 555 (1988).
  28. E. Block, R. Iyer, S. Grisoni, C. Saha, S. Belman, and P. Lossing, Lipoxygenase inhibitors from the essential oil of gaic. Markovnikov addition of the allydithio radical to olefins, J. Am. Chem. Soc., 110, 7813 (1988). https://doi.org/10.1021/ja00231a037
  29. D. S. Bredt and S. H. Snyder, Nitric oxide: a physiologic messenger molecule, Ann. Rev. Biochem., 63, 175 (1994). https://doi.org/10.1146/annurev.bi.63.070194.001135
  30. L. C. Green, D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok, and S. R. Tannenbaum, Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids, Anal. Biochem., 126, 131 (1982). https://doi.org/10.1016/0003-2697(82)90118-X
  31. SAS Institute, Inc. SAS User's statistical analysis system institute, Cary, NC, USA, (1985).
  32. M. Ramalingam and P. Yong-Ki, Free radical scavenging activities of Cinidium officinale Makino and Ligusticum chuanxiong Hort. methanolic extracts, Pharmacogn. Mag., 6(24), 323 (2010). https://doi.org/10.4103/0973-1296.71794
  33. H. Yoshigi, Physiological activity of essential oils, Fragrance J., 6, 88 (1986).
  34. J. M. Jeong, Antioxidative and antiallergic effects of Aronia (Aronia melanocarpa) extract, J. Korean Soc. Food Sci. Nutr., 37(9), 1109 (2008). https://doi.org/10.3746/jkfn.2008.37.9.1109
  35. M. Yamashita, Analysis of the mechanism for the anti-inflammatory effect of the anti-rheumatic drug auranofin, Yakugaku Zasshi., 120(3), 265 (2000). https://doi.org/10.1248/yakushi1947.120.3_265
  36. H. H. Leem, E. O. Kim, and S. W. Choi, Antioxidant and anti-inflammatory activity of eugenol derivatives of clove(Eugenia caryophyllata Thunb.), J. Korean Sco. Food Sci. Nutr., 2011 (in print).
  37. M. R. Kim, A. M. A. El-Aty, J. H. Choi, K. B. Lee, and J. H. Shim, Identification of volatile components in Angelica species using supercritical-CO2 fluid extraction and solid phase microextraction coupled to gas chromatography-mass spectometry, Biomed. Chromatogr., 20, 1267 (2006). https://doi.org/10.1002/bmc.696
  38. H. J. Park and M. Y. Choi, In vitro antiinflammatory activity of paeonol from the essential oil and its derivative methylpaeonol, Kor. J. Pharmacogn., 36(2), 116 (2005).