DOI QR코드

DOI QR Code

Study on the Antioxidative Activities and Anti-Inflammatory Effect of Kaempferol and Kaempferol Rhamnosides

Kaempferol 및 Kaempferol Rhamnosides의 항산화 활성 및 항염 효과에 관한 연구

  • 이근하 ((주)모아캠 기술연구소) ;
  • 조영롱 ((주)모아캠 기술연구소) ;
  • 주철규 ((주)모아캠 기술연구소) ;
  • 주연정 ((주)모아캠 기술연구소) ;
  • 권순상 ((주)모아캠 기술연구소) ;
  • 안수미 (경희대학교 피부생명공학센터) ;
  • 오수진 (경희대학교 피부생명공학센터) ;
  • 노호식 ((주)아모레퍼시픽 기술연구원) ;
  • 박청 ((주)모아캠 기술연구소)
  • Received : 2011.09.08
  • Accepted : 2011.09.16
  • Published : 2011.09.30

Abstract

In this study, to evaluate the antioxidative activities and anti-inflammatory effects of kaempferol and its rhamnosides, we performed the free radical scavenging assay, ROS inhibition assay and TARC (thymus and activation-regulated chemokine) assay. Also, we studied physiological activity of kaempferol and its rhamnosides (${\alpha}$-rhamnoisorobin, afzelin, kaempferitn) by structure-activity relations. The free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activities were determined with kaempferol (62.5 ${\mu}M$) and ${\alpha}$-rhamnoisorobin (50.0 ${\mu}M$) but afzelin and kaempferitrin did not show free radical scavenging activities. Kaempferol showed a 97.5, 57.8, 47.8 % inhibition of ROS (reactive oxygen species) generated at concentrations of 10, 50 and 100 ${\mu}M$, compared to control (100 %). ${\alpha}$-rhamnoisorobin showed a 93.1, 59.1 and 41.4 % inhibition of ROS at the same concentration. We investigated the inhibitory effects of kaempferol and its rhamnosides on TARC expression. Kaempferol showed a 48.8, 5.5 and 4.4 % inhibition of TARC generated at 10, 50 and 100 ${\mu}M$, compared to control. ${\alpha}$-Rhamnoisorobin showed a 88.1, 19.0 and 1.0 % inhibition of TARC generated at the same concentration. In conclusion, these results indicate that kaempferol and ${\alpha}$-rhamnoisorobin have good antioxidative activities and anti-inflammatory effects that could be applicable to new functional cosmetics for anti-aging and anti-inflammation.

본 연구에서는 kaempferol 및 그 배당체의 항산화 및 항염증 효능을 평가하기 위해 free radical 소거활성, ROS inhibition assay, TARC 생성 억제 관련 실험을 수행하였다. 또한 kaempferol과 그들의 rhamnosides (${\alpha}$-rhamnoisorobin, afzelin, kaempferitrin)의 구조에 따른 생리적 활성의 상관관계를 조사하였다. Kaempferol과 ${\alpha}$-rhamnoisorobin은 free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) 소거활성($FSC_{50}$)에서 각각 62.5, 50.0 ${\mu}M$이 측정되었으며 afzelin과 kaempferitrin은 농도와 상관없이 free radical 소거활성을 나타내지 않았다. ROS inhibition assay에서는 시료 농도를 10, 50, 100 ${\mu}M$을 처리한 결과 kaempferol은 대조군(100 %)에 비하여 ROS 발현 농도를 각각 97.5, 57.8, 47.8 %로 감소하였으며 ${\alpha}$-rhamnoisorobin은 93.1, 59.1, 41.4 %의 감소를 나타내었다. TARC (thymus and activation regualted chemokine) 생성 억제능 실험을 통해 시료의 항염증 효능을 평가한 결과 kaempferol은 10, 50, 100 ${\mu}M$ 농도에서 대조군(100 %)에 대비하여 각각 48.8, 5.5, 4.4 %로 농도 의존적으로 TARC 생성을 감소시켰으며, ${\alpha}$-rhamnoisorobin은 88.1, 19.0, 1.0 %로 TARC 생성의 감소 효능을 나타내었다. 결론적으로 kaempferol과 그들의 rhamnoside 중 kaempferol과 ${\alpha}$-rhamnoisorobin은 항산화, 항염증에 대한 우수한 효능을 나타내는 것으로 사료되며 더 나아가서는 항노화 및 항염증에 효과가 있는 기능성 화장품에 응용 가능성이 있음을 시사한다.

Keywords

References

  1. B. Havsteen, Flavonoids, a class of natural products of high pharmacological potency, B. Pharm., 32, 1141 (1983).
  2. H. Tapiero, K. D. Tew, G. Ba, G. Nguyen, and Mathe, Polyphenols: do they play a role in the prevention of human pathologies?, Biom, Pharmaco., 56, 200 (2002). https://doi.org/10.1016/S0753-3322(02)00178-6
  3. B. E. Leibovitz and J. A Mueller, Bioflavonoids and polyphenols: medical applecations, J. OptimalNutr., 35, 217 (1993).
  4. Rothwell, J. A. Day, A. J. Morgan, and M. R, Experimental determination of octanol-water partition coefficients of quercetin and related flavonoids, J. Agri. Foodchem., 53, 4355 (2005). https://doi.org/10.1021/jf0483669
  5. D. ross, S. Mendiratta, Z. C. Qu, C. E. Cobb, and J. M. May, Ascorbate 6-palmitate protects human erythrocytes from oxidative damage, FreeRadic. Biol. Med., 26, 81 (1998).
  6. Z. Zuo, L. Zhang, L. Zhou, Q. Chang, and M. Chow, Intestinal absorption of hawthorn flavonoids - in vitro, in situ and in vivo correlations, Life Sci., 79, 2455 (2006). https://doi.org/10.1016/j.lfs.2006.08.014
  7. A. O. Karen, J. D. Andrea, W. N. Paul, S. S. William, M. O. Nora, and W. Gary, Flavonoid glucuronides are substrates for human liver $\beta$-glucuronidase, FEBS Lett., 503, 103 (2001). https://doi.org/10.1016/S0014-5793(01)02684-9
  8. N. N. Leyre, C. Julian, L. L. Maria, M. Constantino, B. G. Obdulio, V. Vicente, and R. Jose, Thromboxane $A^{2}$ receptor antagonism by flavonoids: structure- activity relationships, J. Agric, Food. Chem., 57, 1589 (2009). https://doi.org/10.1021/jf803041k
  9. D. K. Vessela, Phenolic antioxidants-radical-scavenging and chain-breaking activity: a comparative study, Eur. J. Lipid Sci., 111, 1072 (2009). https://doi.org/10.1002/ejlt.200900005
  10. J. C. Fantone and P. A. Ward, Role of oxygen-derived free radicals and metabolites in leukocyte dependent inflammatory reaction, Ann. J. Path., 107, 397 (1982).
  11. K. J. A. Davies, Protein damage and degradation by oxygen radical, J. Biol. Chem., 262, 9895 (1987).
  12. C. S. Foote, Photosensitized oxidation and singlet oxygen; consequences in biological systems, W. A. Pryor, 2, 85, Acdemic press, New York (1976).
  13. S. N. Park, Skin aging and antioxidant, J. Soc. Cosmet. Scientists Korea, 23, 75 (1997).
  14. S. N. Park, Protective effect of isoflavone, genistein from soybean on singlet oxygen induced photohemolysis of human erythrocytes, Korean J. Food Sci. Technol., 35(3), 510 (2003).
  15. S. N. Park, Antioxidative properties of baicalein, component from Scutellaria baicalensis Georgi and its application to cosmetics (I), J. Korean Ind. Eng. Chem., 14(5), 657 (2003).
  16. K. Scharffetter-Kochanek, Photoaging of the connective tissue of skin: its prevention and therapy, antioxidants in disease mechanism and therapy, Adv. Pharmacol., 38, 639 (1997).
  17. R. M. Tyrrell and M. Pidoux, Singlet oxygen involvement in the inactivation of cultured human fibroblast by UVA and near visible radiations, Photochem. Photobiol., 49, 407 (1989). https://doi.org/10.1111/j.1751-1097.1989.tb09187.x
  18. G. F. Vile and R. M. Tyrrell, UVA radiation-induced oxidative damage to lipid and protein in vitro and in human skin fibroblasts is dependent on iron and singlet oxygen, Free Radical Biology & Medicine, 18, 721 (1995). https://doi.org/10.1016/0891-5849(94)00192-M
  19. K. Scharffetter-Kochanek, M. Wlaschek, K. Briviba, and H. Sies, Singlet oxygen induces collagenase expression in human skin fibroblasts, FEBS. Lett., 331, 304 (1993). https://doi.org/10.1016/0014-5793(93)80357-Z
  20. M. Wlaschek, K. Briviba, G. P. Stricklin, H. Sies, and K. Scharffetter-Kochanek, Singlet oxygen may mediate the ultraviolet A in induced synthesis of interstitial collagenase, J. Invest. Dermatol., 104, 194 (1995). https://doi.org/10.1111/1523-1747.ep12612751