DOI QR코드

DOI QR Code

Electrospun Non-Directional Zinc Oxide Nanofibers as Nitrogen Monoxide Gas Sensor

전기방사법에 의해 합성된 무방향성 산화아연 나노섬유의 일산화질소 가스 감지 특성

  • Kim, Ok-Kil (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyojin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Dojin (Department of Materials Science and Engineering, Chungnam National University)
  • 김옥길 (충남대학교 공과대학 재료공학과) ;
  • 김효진 (충남대학교 공과대학 재료공학과) ;
  • 김도진 (충남대학교 공과대학 재료공학과)
  • Received : 2012.10.07
  • Accepted : 2012.10.24
  • Published : 2012.11.27

Abstract

We report on the NO gas sensing properties of non-directional ZnO nanofibers synthesized using a typical electrospinning technique. These non-directional ZnO nanofibers were electrospun on an $SiO_2$/Si substrate from a solution containing poly vinyl alcohol (PVA) and zinc nitrate hexahydrate dissolved in distilled water. Calcination processing of the ZnO/PVA composite nanofibers resulted in a random network of polycrystalline ZnO nanofibers of 50 nm to 100 nm in diameter. The diameter of the nanofibers was found to depend primarily on the solution viscosity; a proper viscosity was maintained by adding PVA to fabricate uniform ZnO nanofibers. Microstructural measurements using scanning electron microscopy revealed that our synthesized ZnO nanofibers after calcination had coarser surface morphology than those before calcination, indicating that the calcination processing was sufficient to remove organic contents. From the gas sensing response measurements for various NO gas concentrations in dry air at several working temperatures, it was found that gas sensors based on electrospun ZnO nanofibers showed quite good responses, exhibiting a maximum sensitivity to NO gas in dry air at an operating temperature of $200^{\circ}C$. In particular, the non-directional electrospun ZnO nanofiber gas sensors were found to have a good NO gas detection limit of sub-ppm levels in dry air. These results illustrate that non-directional electrospun ZnO nanofibers are promising for use in low-cost, high-performance practical NO gas sensors.

Keywords

References

  1. D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei and C. Zhou, Nano Lett., 4, 1919 (2004). https://doi.org/10.1021/nl0489283
  2. I. D Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo and H. L. Tuller, Nano Lett., 6, 2009 (2006). https://doi.org/10.1021/nl061197h
  3. T. Seiyama, A. Kato, K. Fujiishi and M. Nagatani, Anal. Chem., 34, 1502 (1962). https://doi.org/10.1021/ac60191a001
  4. N. Koshizaki and T. Oyama, Sens. Actuators B, 66, 119 (2000). https://doi.org/10.1016/S0925-4005(00)00323-3
  5. M. S. Wagh, G. H. Jain, D. R. Patil, S. A. Patil and L. A. Patil, Sens. Actuators B, 115, 128 (2006). https://doi.org/10.1016/j.snb.2005.08.030
  6. S. Basu and A. Dutta, Sens. Actuators B, 22, 83(1994). https://doi.org/10.1016/0925-4005(94)87004-7
  7. J. F. Chang, H. H. Kuo, I. C. Leu and M. H. Hon, Sens. Actuators B, 84, 258 (2002). https://doi.org/10.1016/S0925-4005(02)00034-5
  8. Y. Min, H. L. Tuller, S. Palzer, J. Wollenstein and H. Bottner, Sens. Actuators B, 93, 435 (2003). https://doi.org/10.1016/S0925-4005(03)00170-9
  9. J. Xu, Q. Pan, Y. Shun and Z. Tian, Sens. Actuators B, 66, 277 (2000). https://doi.org/10.1016/S0925-4005(00)00381-6
  10. T. Gao and T. H. Wang, Appl. Phys. A Mater. Sci. Process., 80, 1451 (2005). https://doi.org/10.1007/s00339-004-3075-2
  11. Z. Fan and J. G. Lu, J. Nanosci. Nanotechnol., 5, 1561 (2005). https://doi.org/10.1166/jnn.2005.182
  12. A. Og. Dikovska, P. A. Atanasov, S. Tonchev, J. Ferreira and L. Escoubas, Sens. Actuators A, 140, 19 (2007). https://doi.org/10.1016/j.sna.2007.05.032
  13. S. -M. Park, S. -L. Zhang and J. -S. Huh, Kor. J. Mater. Res., 18, 367 (2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.7.367
  14. D. Li and Y. Xia, Adv. Mater., 16, 1151 (2004). https://doi.org/10.1002/adma.200400719
  15. J. Doshi and D. H. Reneker. J. Electrostatics, 35, 151 (1995). https://doi.org/10.1016/0304-3886(95)00041-8
  16. A. Greiner and J. H. Wendorff, Angew. Chem. Int. Ed., 46, 5670 (2007). https://doi.org/10.1002/anie.200604646
  17. S. Y. Park, H. Jung, E. Ahn, L. H. Nguyen, Y. Kang, H. Kim and D. Kim, Kor. J. Mater. Res., 18, 655 (2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.12.655
  18. M. Che and A. J. Tench, Adv. Catal., 31, 77 (1982). https://doi.org/10.1016/S0360-0564(08)60453-8
  19. R. W. J. Scott, S. M. Yang, G. Chabanis, N. Coombs, D. E. Williams and G. A. Ozin, Adv. Mater., 13, 1468 (2001). https://doi.org/10.1002/1521-4095(200110)13:19<1468::AID-ADMA1468>3.0.CO;2-O
  20. S. C. Naisbitt, K. F. E. Pratt, D. E. Williams and I. P. Parkin, Sens. Actuators B, 114, 969 (2006). https://doi.org/10.1016/j.snb.2005.07.058
  21. S. Ahlers, G. Muller and Th. Doll, Encyclopedia of Sensors, p. 413, ed. by C. A. Grimes, E. C. Dickey and M. V. Pishko, American Scientific Publishers, USA (2006).

Cited by

  1. ZnO Hierarchical Nanostructures Fabricated by Electrospinning and Hydrothermal Methods for Photoelectrochemical Cell Electrodes vol.23, pp.11, 2013, https://doi.org/10.3740/MRSK.2013.23.11.655