DOI QR코드

DOI QR Code

Fabrication of Hydrogen Sensors Using Graphenes Decorated Nanoparticles and Their Characteristics

나노입자가 코팅된 그래핀 기반 수소센서의 제작과 그 특성

  • Received : 2012.08.10
  • Accepted : 2012.10.15
  • Published : 2012.11.30

Abstract

This paper presents the fabrication and characterization of graphene based hydrogen sensors. Graphene was synthesized by annealing process of Ni/3C-SiC thin films. Graphene was transferred onto oxidized Si substrates for fabrication of chemiresistive type hydrogen sensors. Au electrode on the graphene shows ohmic contact and the resistance is changed with hydrogen concentration. Nanoparticle catalysts of Pd and Pt were decorated. Response factor and response (recovery) time of hydrogen sensors based on the graphene are improved with catalysts. The response factors of pure graphene, Pt and Pd doped graphenes are 0.28, 0.6 and 1.26, respectively, at 50 ppm hydrogen concentration.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. N. Tasaltin, S. Ozturk, N. Kihnc, and Z. Z. Ozturk, "Temperature dependence of a nano porous Pd film hydrogen sensor based on an AAO template on Si" Appl. Phys. A, Vol. 97, pp. 745-750, 2009. https://doi.org/10.1007/s00339-009-5440-7
  2. C. Lu and Z. Chen, "High-temperature resistive hydrogen sensor based on thin nanoporous rutile $TiO_2$ film on anodix aluminum oxide", Sens. Actuators B, Vol. 140, pp. 109-115, 2009. https://doi.org/10.1016/j.snb.2009.04.004
  3. T. Waitz, T. Wagner, T. Sauerwald, C. D. Kohl, and M. Tiemann, "Ordered mesoporous $In_2O_3$ : Synthesis by structure replication and application as a methane gas sensor", Adv. Func. Mat., Vol. 19, pp. 653-661. 2009. https://doi.org/10.1002/adfm.200801458
  4. B. H. Chu, C. F. Lo, J. Nicolosi, C. Y. Chang, V. Chen, W. Strupinski, S. J. Pearton, and F. Ren, "Hydrogen detection using platinum coated graphene grown on SiC", Sens. Actuators B, Vol. 157, pp. 500-503, 2011. https://doi.org/10.1016/j.snb.2011.05.007
  5. M. G. Chung, D. H. Kim, D. K. Seo, T. Kim, H. U. Im, H. M. Lee, J. B. Yoo, S. H. Honh, T. J. Kang, Fig. 5. Resistance and time measurement of sensors with hydrogen and Y. H. Kim, "Flexible hydrogen sensors using graphene with palladium nanoparticle decoration", Sens. Actuators B, Vol. 169, pp. 387-392, 2012. https://doi.org/10.1016/j.snb.2012.05.031
  6. F. A. Lewis, The palladium-hydrogen system, London: Academic, 1967.
  7. M. Khanuja, S. Kala, B. R. Mehta, and F. E. Kruis, "Concentration-specific hydrogen sensing behavior in monosized Pd nanoparticle layers", Nano Tech., Vol. 20, pp. 015502(1)-015502(7), 2009.
  8. J. L. Johnson, A. Behnam, S. J. Pearton, and A. Ural, "Hydrogen sensing using Pd-functionalized multilayer graphene nanoribbon networks", Adv. Mater., Vol. 22, pp. 4877-4880, 2010. https://doi.org/10.1002/adma.201001798
  9. K. S. Kim and G. S. Chung, "Characterization of porous cubic silicon carbide deposited with Pd and Pt nanoparticles as a hydrogen sensor", Sens. Actuators B, Vol. 157, pp. 482-487, 2011. https://doi.org/10.1016/j.snb.2011.05.004
  10. C. K. Kim, J. H. Lee, S. M. Choi, I. H. Noh, H. R. Kim, N. I. Cho, C. Hong, and G. E. Jang, "Pd- and Pt-SiC Schottky diodes for detection of $H_2$ and Ch4 at high temperature", Sens. Actuators B, Vol. 77, pp. 455-462, 2001. https://doi.org/10.1016/S0925-4005(01)00725-0
  11. J. Berashevich and T. Chakraborty, "Tunable band gap and magnetic ordering by adsorption of molecules on graphene", Phys. Rev. B, Vol. 80, pp. 033404(1)-033404(4), 2009.
  12. F. Yavari, C. Krizinger, C. Gaire, L. Song, H. Gullapalli, T. Borca-Tasiuc, P. M. Ajayan, and N. Koratkar, "Tunable bandgap in graphene by the controlled adsorption of water molecules", Small, Vol. 6 pp. 2535-2538, 2010. https://doi.org/10.1002/smll.201001384
  13. B. H. Chu, C. F. Lo, J. Nicolosi, C. Y. Chang, V. Chen, W. Strupinski, S. J. Pearton, and F. Ren, "Hydrogen detection using platinum coated graphene grown on SiC", Sens. Actuators B, Vol. 157 pp. 500-503, 2011. https://doi.org/10.1016/j.snb.2011.05.007
  14. G. S. Chung and J. H. Ahn, "Fabrication of Pd/poly 3C-SiC Schottky diode hydrogen sensor and its characteristics", J. Sensor Sci. & Tech., Vol. 18, No. 4, pp. 223-225, 2009.
  15. K. S. Kim and G. S. Chung, "Fabrication of a porous 3C-SiC based resistivity hydrogen sensor and its characteristics", J. Sensor Sci. & Tech., Vol. 20, No. 3, pp. 168-171, 2011. https://doi.org/10.5369/JSST.2011.20.3.168