DOI QR코드

DOI QR Code

Improved Production of Long-Chain Fatty Acid in Escherichia coli by an Engineering Elongation Cycle During Fatty Acid Synthesis (FAS) Through Genetic Manipulation

  • Jeon, Eunyoung (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Lee, Sunhee (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Lee, Seunghan (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Han, Sung Ok (School of Life Science and Biotechnology, Korea University) ;
  • Yoon, Yeo Joon (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Lee, Jinwon (Department of Chemical and Biomolecular Engineering, Sogang University)
  • Received : 2011.12.22
  • Accepted : 2012.03.11
  • Published : 2012.07.28

Abstract

The microbial biosynthesis of fatty acid of lipid metabolism, which can be used as precursors for the production of fuels of chemicals from renewable carbon sources, has attracted significant attention in recent years. The regulation of fatty acid biosynthesis pathways has been mainly studied in a model prokaryote, Escherichia coli. During the recent period, global regulation of fatty acid metabolic pathways has been demonstrated in another model prokaryote, Bacillus subtilis, as well as in Streptococcus pneumonia. The goal of this study was to increase the production of long-chain fatty acids by developing recombinant E. coli strains that were improved by an elongation cycle of fatty acid synthesis (FAS). The fabB, fabG, fabZ, and fabI genes, all homologous of E. coli, were induced to improve the enzymatic activities for the purpose of overexpressing components of the elongation cycle in the FAS pathway through metabolic engineering. The ${\beta}$-oxoacyl-ACP synthase enzyme catalyzed the addition of acyl-ACP to malonyl-ACP to generate ${\beta}$-oxoacyl-ACP. The enzyme encoded by the fabG gene converted ${\beta}$-oxoacyl-ACP to ${\beta}$-hydroxyacyl-ACP, the fabZ catalyzed the dehydration of ${\beta}$-3-hydroxyacyl-ACP to trans-2-acyl-ACP, and the fabI gene converted trans-2-acyl-ACP to acyl-ACP for long-chain fatty acids. In vivo productivity of total lipids and fatty acids was analyzed to confirm the changes and effects of the inserted genes in E. coli. As a result, lipid was increased 2.16-fold higher and hexadecanoic acid was produced 2.77-fold higher in E. coli JES1030, one of the developed recombinants through this study, than those from the wild-type E. coli.

Keywords

References

  1. Atsumi, S., T. Hanai, and J. C. Liao. 2008. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature Lett. 451: 86-89. https://doi.org/10.1038/nature06450
  2. Atsumi, S., T. Wu, E. Eckl, S. D. Hawkins, T. Buelter, and J. C. Liao. 2010. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/ alcohol dehydrogenase genes. Appl. Microbiol. Biotechnol. 85: 651-657. https://doi.org/10.1007/s00253-009-2085-6
  3. Bligh, E. G. and W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917. https://doi.org/10.1139/o59-099
  4. Campbell, J. W. and J. E. Cronan Jr. 2001. Bacterial fatty acid biosynthesis: Targets for antibacterial drug discovery. Annu. Rev. Microbiol. 55: 305-332. https://doi.org/10.1146/annurev.micro.55.1.305
  5. Davis, M. S. and J. E. Cronan Jr. 2001. Inhibition of Escherichia coli acetyl coenzyme A carboxylase by acyl-acyl carrier protein. J. Bacteriol. 183: 1499-1503. https://doi.org/10.1128/JB.183.4.1499-1503.2001
  6. David, I. C. and J. V. Hans. 2010. Current understanding of fatty acid biosynthesis and the acyl carrier protein. Biochem. J. 430: 1-19. https://doi.org/10.1042/BJ20100462
  7. David, I., D. Chan, T. Peter, and J. V. Hans. 2010. Molecular dynamics simulations of ${\beta}$-ketoacyl-, ${\beta}$-hydroxyacyl-, and trans-2-enoyl-acyl carrier proteins of Escherichia coli. Biochemistry 49: 2860-2868. https://doi.org/10.1021/bi901713r
  8. De Lay, N. R. and J. E. Cronan Jr. 2007. In vivo functional analyses of the type II acyl carrier proteins of fatty acid biosynthesis. J. Biol. Chem. 282: 20319-20328. https://doi.org/10.1074/jbc.M703789200
  9. Heath, R. J. and C. O. Rock. 1995. Regulation of malonyl-CoA metabolism by acyl-acyl carrier protein and ${\beta}$-ketoacyl-acyl carrier protein synthases in Escherichia coli. J. Biol. Chem. 270: 15531-15538. https://doi.org/10.1074/jbc.270.26.15531
  10. Heath, R. J. and C. O. Rock. 1996. Inhibition of ${\beta}$-ketoacyl-acyl carrier protein synthase III (FabH) by acyl-acyl carrier protein in Escherichia coli. J. Biol. Chem. 271: 10996-11000. https://doi.org/10.1074/jbc.271.18.10996
  11. Heath, R. J. and C. O. Rock. 1996. Regulation of fatty acid elongation and initiation by acyl-acyl carrier protein in Escherichia coli. J. Biol. Chem. 271: 1833-1836. https://doi.org/10.1074/jbc.271.4.1833
  12. Helmut, B., F. Sandra, H. Gregor, and T. Friederike. 1996. The enoyl-[acyl-carrier-protein] reductase (FabI) of Escherichia coli, which catalyzes a key regulatory step in fatty acid biosynthesis, accepts NADH and NADPH as cofactors and is inhibited by palmitoyl-CoA. Eur. J. Biochem. 242: 689-694. https://doi.org/10.1111/j.1432-1033.1996.0689r.x
  13. Jeon, E. Y., S. H. Lee, J. I. Won, S. O. Han, J. H. Kim, and J. W. Lee. 2011. Development of Escherichia coli MG1655 strains to produce long chain fatty acids by engineering fatty acid synthesis (FAS) metabolism. EMT 49: 44-51.
  14. Kalscheuer, R., T. Stolting, and A. Steinbuchel. 2006. Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152: 2529-2536. https://doi.org/10.1099/mic.0.29028-0
  15. Lai, C. Y. and J. E. Cronan. 2004. Isolation and characterization of ${\beta}$-ketoacyl-acyl carrier protein reductase (fabG) mutants of Escherichia coli and Salmonella enterica serovar Typhimurium. J. Bacteriol. 186: 1869-1878. https://doi.org/10.1128/JB.186.6.1869-1878.2004
  16. Lei, Z., C. Juanli, L. Biao, F. Saixiang, L. Jinshui, W. Shengbin, et al. 2009. Functions of the Clostridium acetobutylicium FabF and FabZ proteins in unsaturated fatty acid biosynthesis. BMC Microbiol. 9: 119. https://doi.org/10.1186/1471-2180-9-119
  17. Liu, T., H. Vora, and C. Khosla. 2010. Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metab. Eng. 12: 378-386. https://doi.org/10.1016/j.ymben.2010.02.003
  18. Marrakchi, H., Y. M. Zhang, and C. O. Rock. 2002. Mechanistic diversity and regulation of Type II fatty acid synthesis. Biochem. Soc. Trans. 30: 1050-1055.
  19. Merriann, R. and E. C. John Jr. 1992. The gene encoding Escherichia coli acyl carrier protein lies within a cluster of fatty acid biosynthetic genes. J. Biol. Chem. 267: 5751-5754.
  20. Magnuson, K., S. Jackowski, C. O. Rock, and J. E. Cronan Jr. 1993. Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol. Mol. Biol. Rev. 57: 522-542.
  21. Natalya, S. and A. R. Kevin. 2001. Engineered fatty acid biosynthesis in Streptomyces by altered catalytic function of ${\beta}$- ketoacyl-acyl carrier protein synthase III. J. Bacteriol. 183: 2335-2342. https://doi.org/10.1128/JB.183.7.2335-2342.2001
  22. von Wettstein-Knowles, P., J. G. Olsen, K. A. McGuire, and A. Henriksen. 2006. Fatty acid synthesis: Role of active site histidines and lysine in Cys-His-His-type ${\beta}$-ketoacyl-acyl carrier protein synthases. J. FEBS 273: 695-710. https://doi.org/10.1111/j.1742-4658.2005.05101.x
  23. Heath, R. J. and C. O. Rock. 1995. Regulation of malonyl-coA Metabolism by acyl-acyl carrier protein and ${\beta}$-ketoacyl-acyl carrier protein synthases in Escherichia coli. J. Biol. Chem. 270: 15531-15538. https://doi.org/10.1074/jbc.270.26.15531
  24. Heath, R. J. and C. O. Rock. 1996. Roles of the FabA and FabZ ${\beta}$-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis. J. Biol. Chem. 271: 27795-27801. https://doi.org/10.1074/jbc.271.44.27795
  25. Heath, R. J., N. Su, C. K. Murphy, and C. O. Rock. 2000. The enoyl-[acyl-carrier-protein] reductases FabI and FabL from Bacillus subtilis. J. Biol. Chem. 275: 40128-40133. https://doi.org/10.1074/jbc.M005611200
  26. Sambrook, J. and D. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, New York.
  27. Mohan, S., T. M. Kelly, S. S. Eveland, C. R. Raetz, and M. S. Anderson. 1994. An Escherichia coli gene (FabZ) encoding (3R)-hydroxymyristoyl acyl carrier protein dehydrase. J. Biol. Chem. 269: 32896-32903.
  28. Schweizer, E. and J. Hofmann. 2004. Microbial type I fatty acid synthases (FAS): Major players in a network of cellular FAS systems. Microbiol. Mol. Biol. Rev. 68: 501-517. https://doi.org/10.1128/MMBR.68.3.501-517.2004
  29. Shiba, Y., E. M. Paradise, J. Kirby, D. K. Ro, and J. D. Keasling. 2007. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab. Eng. 9: 160-168. https://doi.org/10.1016/j.ymben.2006.10.005
  30. Smirnova, N. and K. A. Reynolds. 2001. Branched-chain fatty acid biosynthesis in Escherichia coli. J. Ind. Microbiol. Biotechnol. 27: 246-251. https://doi.org/10.1038/sj.jim.7000185
  31. Subrahmanyam, S. and J. E. Cronan Jr. 1998. Overproduction of a functional fatty acid biosynthetic enzyme blocks fatty acid synthesis in Escherichia coli. J. Bacteriol. 180: 4596-4602.
  32. Jackowski, S. and C. O. Rock. 1987. Acetoacetyl-acyl carrier protein synthase, a potential regulator of fatty acid biosynthesis in bacteria. J. Biol. Chem. 262: 7927-7931.
  33. Hoang, T. T., S. A. Sullivan, J. K. Cusick, and H. P. Schweizer. 2002. ${\beta}$-Ketoacyl acyl carrier protein reductase (FabG) activity of the fatty acid biosynthetic pathway is a determining factor of 3-oxo-homoserine lactone acyl chain lengths. Microbiology 148: 3849-3856.
  34. Wang, C., S. H. Yoon, A. A. Shah, Y. R. Chung, J. Y. Kim, E. S. Choi, et al. 2010. Farnesol production from Escherichia coli by harnessing the exogenous mevalonate pathway. Biotechnol. Bioeng. 107: 421-429. https://doi.org/10.1002/bit.22831
  35. Wang, H. and J. E. Cronan. 2004. Functional replacement of the FabA and FabB proteins of Escherichia coli fatty acid synthesis by Enterococcus faecalis FabZ and FabF homologues. J. Biol. Chem. 279: 34489-34495. https://doi.org/10.1074/jbc.M403874200
  36. Yan, Z. and J. E. Cronan Jr. 1998. Transcriptional analysis of essential genes of the Escherichia coli fatty acid biosynthesis gene cluster by functional replacement with the analogous Salmonella Typhimurium gene cluster. J. Bacteriol. 180: 3295-3303.
  37. Yomano, L. P., S. W. York, S. Zhou, K. T. Shanmugam, and L. O. Ingram. 2001. Re-engineering Escherichia coli for ethanol production. Biotechnol. Lett. 30: 2097-2103.
  38. Yoon, S. H., S. H. Lee, A. Das, H. K. Ryu, H. J. Jang, J. Y. Kim, et al. 2009. Combinatorial expression of bacterial whole mevalonate pathway for the production of ${\beta}$-carotene in E. coli. J. Biotechnol. 140: 218-226. https://doi.org/10.1016/j.jbiotec.2009.01.008
  39. Zha, W., S. B. Rubin-Pitel, Z. Shao, and H. Zhao. 2009. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metab. Eng. 11: 192-198. https://doi.org/10.1016/j.ymben.2009.01.005

Cited by

  1. Comparison of Hair Fatty Alcohols by N‐Alkylpyridinium Isotope Quaternization and Matrix‐assisted Laser Desorption/ionization Mass Spectrometry for Drug Abuse Monitoring vol.30, pp.10, 2012, https://doi.org/10.1002/cjoc.201200547
  2. Enhancement of Long-Chain Fatty Acid Production in Escherichia coli by Coexpressing Genes, Including fabF, Involved in the Elongation Cycle of Fatty Acid Biosynthesis vol.169, pp.2, 2012, https://doi.org/10.1007/s12010-012-9987-y
  3. Improvement of free fatty acid production in Escherichia coli using codon-optimized Streptococcus pyogenes acyl-ACP thioesterase vol.36, pp.10, 2013, https://doi.org/10.1007/s00449-012-0882-2
  4. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels vol.7, pp.None, 2014, https://doi.org/10.1186/1754-6834-7-7
  5. The production of ω-hydroxy palmitic acid using fatty acid metabolism and cofactor optimization in Escherichia coli vol.99, pp.16, 2015, https://doi.org/10.1007/s00253-015-6630-1
  6. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering vol.11, pp.1, 2012, https://doi.org/10.1039/c4mb00443d
  7. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxygenase with a bacterial type-I fatty acid synthase in E. coli. vol.11, pp.9, 2015, https://doi.org/10.1039/c5mb00268k
  8. Using Modern Tools To Probe the Structure–Function Relationship of Fatty Acid Synthases vol.16, pp.4, 2012, https://doi.org/10.1002/cbic.201402578
  9. Efficient production of free fatty acids from ionic liquid-based acid- or enzyme-catalyzed bamboo hydrolysate vol.44, pp.3, 2012, https://doi.org/10.1007/s10295-016-1888-6
  10. FabG can function as PhaB for poly-3-hydroxybutyrate biosynthesis in photosynthetic cyanobacteria Synechocystis sp. PCC 6803 vol.8, pp.6, 2012, https://doi.org/10.1080/21655979.2017.1317574
  11. Ketoacylsynthase Domains of a Polyunsaturated Fatty Acid Synthase in Thraustochytrium sp. Strain ATCC 26185 Can Effectively Function as Stand-Alone Enzymes in Escherichia coli vol.83, pp.9, 2017, https://doi.org/10.1128/aem.03133-16
  12. High-Speed Atomic Force Microscopy Visualization of the Dynamics of the Multienzyme Fatty Acid Synthase vol.11, pp.11, 2012, https://doi.org/10.1021/acsnano.7b04216
  13. Fused dimerization increases expression, solubility, and activity of bacterial dehydratase enzymes vol.27, pp.5, 2012, https://doi.org/10.1002/pro.3404
  14. Saturated long-chain fatty acid-producing bacteria contribute to enhanced colonic motility in rats vol.6, pp.1, 2012, https://doi.org/10.1186/s40168-018-0492-6
  15. Microbial Production of Fatty Acid via Metabolic Engineering and Synthetic Biology vol.24, pp.1, 2012, https://doi.org/10.1007/s12257-018-0374-6
  16. Microbial Production of Fatty Acid via Metabolic Engineering and Synthetic Biology vol.24, pp.1, 2012, https://doi.org/10.1007/s12257-018-0374-6
  17. Maximization of saturated fatty acids through the production of P450BM3 monooxygenase in the engineered Escherichia coli vol.126, pp.None, 2021, https://doi.org/10.1016/j.fbp.2021.01.001