DOI QR코드

DOI QR Code

A study of mesenchymal stem cell proliferation and surface characteristics of the titanium discs coated with MS275/PLGA by an electrospray

Electrospray법을 이용한 MS275/PLGA submicron 코팅 티타늄에서의 표면변화와 간엽줄기세포증식에 관한 연구

  • Yoo, Soo-Yeon (Department of Prosthodontics, Seoul National University Dental Hospital, School of Dentistry, Seoul National University) ;
  • Kim, Seong-Kyun (Department of Prosthodontics, Seoul National University Dental Hospital, School of Dentistry, Seoul National University) ;
  • Heo, Seong-Joo (Department of Prosthodontics, Seoul National University Dental Hospital, School of Dentistry, Seoul National University) ;
  • Koak, Jai-Young (Department of Prosthodontics, Seoul National University Dental Hospital, School of Dentistry, Seoul National University) ;
  • Lee, Joo-Hee (Department of Prosthodontics, Seoul Asan Medical Center, Ulsan University) ;
  • Park, Yoon-Kyung (Department of Prosthodontics, Seoul National University Dental Hospital, School of Dentistry, Seoul National University) ;
  • Kim, Ena (Department of Prosthodontics, Seoul National University Dental Hospital, School of Dentistry, Seoul National University)
  • 유수연 (서울대학교 치의학대학원 치과보철학교실) ;
  • 김성균 (서울대학교 치의학대학원 치과보철학교실) ;
  • 허성주 (서울대학교 치의학대학원 치과보철학교실) ;
  • 곽재영 (서울대학교 치의학대학원 치과보철학교실) ;
  • 이주희 (울산대학교 서울아산병원 치과보철과) ;
  • 박윤경 (서울대학교 치의학대학원 치과보철학교실) ;
  • 김에나 (서울대학교 치의학대학원 치과보철학교실)
  • Received : 2012.09.17
  • Accepted : 2012.10.16
  • Published : 2012.10.31

Abstract

Purpose: This study was conducted to identify the surface characteristics of titanium discs coated with MS275/PLGA by electrospray and which is effective to mesenchymal stem cell proliferation. Materials and methods: We used anodized surface coated with PLGA as a control group and anodized surface coated with MS275 $0.5{\mu}M$, $1{\mu}M$, $1.5{\mu}M$ as test groups. To examine that the coating particles are nanometer sized, FE-SEM was used and AFM was utilized to determine the difference of coating surface roughness. We checked the mesenchymal stem cell proliferation by using MTT assay on $1^{st}$, $4^{th}$, $7^{th}$ days. Results: There was no significant difference between control groups and test groups in AFM results (P>.05). In MTT assay results, mesenchymal stem cell proliferation was increased with time, at $7^{th}$ day, cell viability on discs coated with $1.5{\mu}M$ MS275 was significantly higher than control group (P<.05). As SEM showed, the number of cells on all discs was increased and the morphology of cell attachment was also wider and closer with time. Conclusion: Titanium surface coated with MS275/PLGA showed significantly higher cell proliferation and the more density of MS275 was dispersed on titanium discs, the faster cells grew.

연구 목적: 본 실험은 MS275와 PLGA (poly lactic-co-glycolic acid) 의 복합체를 submicron 크기로 티타늄 디스크 표면에 코팅하여, 표면의 변화를 알아보고 생물학적으로 간엽 줄기세포 활성에 어떠한 영향을 미치는지 조사하기 위해 시행되었다. 연구 재료 및 방법:양극산화 디스크에 electrospray 코팅법을 이용하여PLGA를 분사한 것을 대조군으로 설정하고, MS275를 $0.5{\mu}M$, $1{\mu}M$, $1.5{\mu}M$ 농도별로 코팅한 것을 실험군으로 하였다. 티타늄 디스크 표면에 분사된 복합체가 submicron입자 크기로 이루어졌는지SEM을 통해 확인하였으며, MS275로 코팅한 디스크와 양극산화 디스크의 거칠기 차이를 확인하기 위해 AFM으로 관찰하였다. 디스크 위에 간엽줄기세포 배양 후 1, 4, 7일에 세포증식 양상을 SEM과 MTT 검사를 통해 확인하였다. 결과: AFM (atomic force microscope) 결과 대조군과 실험군에서 거칠기의 유의할만한 차이가 없었다(P>.05). MTT 결과 1, 4, 7일 시간이 지남에 따라 세포 증식이 활발해졌으며 세포배양 7일에 $0.5{\mu}M-1.5{\mu}M$ MS275 농도 안에서, MS275의 농도가 커짐에 따라 세포의 활성도가 높아짐이 유의할 수준으로 확인되었다(P<.05). 세포 부착을 SEM으로 확인한 결과, 세포의 부착 수는 시간이 갈수록 증가하고 부착 형태 역시 돌기가 크고 넓어지며, 표면과 긴밀함 접촉이 증가하였다. 결론: FE-SEM과 MTT 결과 MS275/PLGA 복합체로 표면 처리된 타이타늄 표면에서 세포가 초기에 (7일내) 빠르게 증식하였다. 또한 복합체 처리군의 농도가 증가할수록 높은 세포 성장 수치를 보였다.

Keywords

References

  1. Wong M, Eulenberger J, Schenk R, Hunziker E. Effect of surface topography on the osseointegration of implant materials in trabecular bone. J Biomed Master Res 1995;29:1567-76. https://doi.org/10.1002/jbm.820291213
  2. Hermann JS, Cochran DL, Nummikoski PV, Buser D. Crestal bone changes around titanium implants. A radiographic evaluation of unloaded nonsubmerged and submerged implants in the canine mandible. J Periodontol 1997;68:1117-30. https://doi.org/10.1902/jop.1997.68.11.1117
  3. Sul YT, Johansson CB, Petronis S, Krozer A, Jeong Y, Wennerberg A, Albrektsson T. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials 2002;23:491-501. https://doi.org/10.1016/S0142-9612(01)00131-4
  4. Xie J, Baumann MJ, McCabe LR. Osteoblasts respond to hydroxyapatite surfaces with immediate changes in gene expression. J Biomed Mater Res A 2004;71:108-17.
  5. Ivanoff CJ, Widmark G, Hallgren C, Sennerby L, Wennerberg A. Histologic evaluation of the bone integration of TiO2 blasted and turned titanium microimplants in humans. Clin Oral Implants Res 2001;12:128-34. https://doi.org/10.1034/j.1600-0501.2001.012002128.x
  6. Orsini G, Assenza B, Scarano A, Piattelli M, Piattelli A. Surface analysis of machined versus sandblasted and acid-etched titanium implants. Int J Oral Maxillofac Implants 2000;15:779-84.
  7. Zhu X, Chen J, Scheideler L, Altebaeumer T, Geis-Gerstorfer J, Kern D. Cellular reactions of osteoblasts to micron- and submicronscale porous structures of titanium surfaces. Cells Tissues Organs 2004;178:13-22. https://doi.org/10.1159/000081089
  8. Huang HH, Ho CT, Lee TH, Lee TL, Liao KK, Chen FL. Effect of surface roughness of ground titanium on initial cell adhesion. Biomol Eng 2004;21:93-7. https://doi.org/10.1016/j.bioeng.2004.05.001
  9. Kim HN, Lee JH, Bae SC, Ryoo HM, Kim HH, Ha H, Lee ZH. Histone deacetylase inhibitor MS-275 stimulates bone formation in part by enhancing Dhx36-mediated TNAP transcription. J Bone Miner Res 2011;26:2161-73. https://doi.org/10.1002/jbmr.426
  10. Cho YJ, Heo SJ, Koak JY, Kim SK, Lee JH. Cellular responses on anodized titanium discs coated with $1{\alpha}$,25-dihydroxyvitamin D3 incorporated Poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles. J Korean Acad Prosthodont 2008;46:620-627. https://doi.org/10.4047/jkap.2008.46.6.620
  11. Lee SY. Effect of poly(D,L-lactide-co-glycolide)/bone morphogenic protein-2 coating of anodized titanium surface on osteoblast-like cells. MS Thesis. In: Korea, Seoul University, 2010.
  12. Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm 2004;282:1-18. https://doi.org/10.1016/j.ijpharm.2004.04.013
  13. Sims NA, Gooi JH. Bone remodeling: Multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol 2008;19:444-51. https://doi.org/10.1016/j.semcdb.2008.07.016
  14. Agrawal CM, Niederauer GG, Athanasiou KA. Fabrication and Characterization of PLA-PGA Orthopedic Implants. Tissue Eng 1995;1:241-52. https://doi.org/10.1089/ten.1995.1.241
  15. Hahn H, Palich W. Preliminary evaluation of porous metal surfaced titanium for orthopedic implants. J Biomed Mater Res 1970;4:571-7. https://doi.org/10.1002/jbm.820040407
  16. Sammons RL, Lumbikanonda N, Gross M, Cantzler P. Comparison of osteoblast spreading on microstructured dental implant surfaces and cell behaviour in an explant model of osseointegration. A scanning electron microscopic study. Clin Oral Implants Res 2005;16:657-66. https://doi.org/10.1111/j.1600-0501.2005.01168.x
  17. Geesink RG, de Groot K, Klein CP. Bonding of bone to apatitecoated implants. J Bone Joint Surg Br 1988;70:17-22.
  18. de Groot K, Geesink R, Klein CPAT, Serekian P. Plasma sprayed coatings of hydroxylapatite. J Biomed Mater Res 1987;21:1375-81. https://doi.org/10.1002/jbm.820211203
  19. Catledge SA, Vohra YK, Bellis SL, Sawyer AA. Mesenchymal stem cell adhesion and spreading on nanostructured biomaterials. J Nanosci Nanotechnol 2004;4:986-9. https://doi.org/10.1166/jnn.2004.137
  20. Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 2002;6:319-27. https://doi.org/10.1016/S1359-0286(02)00117-1

Cited by

  1. Osseointegration of the titanium implant coated with rhTGF-β2/PLGA particles by electrospray: a preliminary microCT analyzing rabbit study vol.52, pp.4, 2014, https://doi.org/10.4047/jkap.2014.52.4.298