DOI QR코드

DOI QR Code

Interfacial Properties in Cu-phthalocyanine-based Hybrid Inorganic/Organic Multilayers

  • Lee, Nyun Jong (Department of Physics, Ewha Womans University) ;
  • Ito, Eisuke (Flucto-Order Functions Research Team, RIKEN Advanced Science Institute) ;
  • Bae, Yu Jeong (Department of Physics, Ewha Womans University) ;
  • Kim, Tae Hee (Department of Physics, Ewha Womans University)
  • Received : 2012.10.29
  • Accepted : 2012.12.13
  • Published : 2012.12.31

Abstract

Interfacial properties of 5 nm MgO(001)/7 nm Fe(001)/1.8 nm MgO(001)/t nm Cu-phthalocyanine (CuPc) hybrid multilayers with t = 0, 1, 7, and 10 were investigated by using x-ray photoemission spectroscopy (XPS). Rather sharp interfacial properties were observed in the CuPc films grown on an epitaxial MgO/Fe/MgO(001) trilayer than a MgO/Fe(001) bilayer. This work suggests a new way to improve device performance of organic spintronic devices by utilizing an artificially grown MgO(001) thin layer.

Keywords

References

  1. K. Al-Sharmery, H.-G. Rubahn, and H. Sitter, Organic Nanostructures for Next Generation Devices, Springer, Berlin (2008) pp. 263-345.
  2. F. Sawano, I. Terasaki, H. Mori, T. Mori, M. Watanabe, N. Ikeda, Y. Nogami, and Y. Noda, Nature 437, 522 (2005). https://doi.org/10.1038/nature04087
  3. Y.-S. Lai, C.-H. Tu, D.-L. Kwong, and J. S. Chen, Appl. Phys. Lett. 87, 122101 (2005). https://doi.org/10.1063/1.2051801
  4. V. A. Dediu, L. E. Hueso, I. Bergenti, and C. Taliani, Nature Mater. 8, 707 (2009). https://doi.org/10.1038/nmat2510
  5. Z. H Xiong, D. Wu, Z. V. Vardeny, and J. Shi, Nature 427, 821 (2004). https://doi.org/10.1038/nature02325
  6. J.-W. Yoo, C.-Y. Chen, H. W. Jang, C. W. Bark, V. N. Prigodin, C. B. Eom, and A. J. Epstein, Nature Mater. 9, 638 (2010). https://doi.org/10.1038/nmat2797
  7. W. J. M. Naber, S. Faez, and W. G. van der Wiel, J. Phys. D 40, R205 (2007). https://doi.org/10.1088/0022-3727/40/12/R01
  8. Y. Q. Zhan, X. J. Liu, E. Carlegrim, F. H. Li, I. Bergenti, P. Graziosi, V. Dediu, and M. Fahlman, Appl. Phys. Lett. 94, 053301 (2009). https://doi.org/10.1063/1.3078274
  9. H. W. Choi, S. Y. Kim, W.-K. Kim, K. Hong, and J.-L. Lee, J. Appl. Phys. 100, 064106 (2006). https://doi.org/10.1063/1.2349552
  10. T. S. Santos, J. S. Lee, P. Migdal, I. C. Lekshmi, B. Satpati, and J. S. Moodera, Phys. Rev. Lett. 98, 016601 (2007). https://doi.org/10.1103/PhysRevLett.98.016601
  11. Y. J. Bae, N. J. Lee, T. H. Kim, H. Cho, C. Lee, L. Fleet, and A. Hirohata, Nanoscale Research Letters 7, 650 (2012). https://doi.org/10.1186/1556-276X-7-650
  12. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nature Mater. 3, 868 (2004) https://doi.org/10.1038/nmat1257
  13. W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. Maclaren, Phys. Rev. B 63, 054416 (2001). https://doi.org/10.1103/PhysRevB.63.054416
  14. S. J. Roosendaal, B. van Asselen, J. W. Elsenaar, A. M. Vredenberg, and F. H. P. M. Habraken, Surf. Sci. 442, 329 (1999). https://doi.org/10.1016/S0039-6028(99)01006-7
  15. T. Yamashita and P. Hayes, J. Electron Spectrosc. Relat. Phenom. 152, 6 (2006). https://doi.org/10.1016/j.elspec.2006.02.002
  16. C. Ruby, B. Humbert, and J. Fusy, Surf. Interface Anal. 29, 377 (2000). https://doi.org/10.1002/1096-9918(200006)29:6<377::AID-SIA879>3.0.CO;2-F
  17. P. Casey, G. Hughes, E. O'Connor, R. D. Long, and P. K. Hurley, J. Phys.: Conference Series 100, 042046 (2008). https://doi.org/10.1088/1742-6596/100/4/042046
  18. G. Beamson and D. Briggs, High Resolution XPS of Organic Polymers, John Wiley & Sons, Chichester (1992).