DOI QR코드

DOI QR Code

Acceleration of the Mycelial Growth of Trametes veriscolor by Spent Coffee Ground

커피박에 의한 구름버섯 균사체의 생장 촉진

  • Lee, Min-Ku (Department of Biotechnology, Catholic University of Daegu) ;
  • Shin, Dong-Il (Department of Biotechnology, Catholic University of Daegu) ;
  • Park, Hee-Sung (Department of Biotechnology, Catholic University of Daegu)
  • 이민구 (대구가톨릭대학교 생명공학과) ;
  • 신동일 (대구가톨릭대학교 생명공학과) ;
  • 박희성 (대구가톨릭대학교 생명공학과)
  • Received : 2012.11.08
  • Accepted : 2012.12.06
  • Published : 2012.12.31

Abstract

Trametes versicolor, a common inhabitant of dead hardwoods in temperate climates, belongs to one of the important medicinal mushrooms. In this study, spent coffee ground(SCG), instant coffee powder(ICP) and instant decaffeinated coffee powder(IDCP) were examined for their effect on the mycelial growth of T. versicolor. Adding SCG was proven to be significantly beneficial at the concentration as high as 10%. ICP and IDCP, both containing concentrated polyphenols, were also beneficial at low concentration less than 1%. 1% SCG culture resulted in ten-fold increased yield of dry cell mass compared to the control culture. Adding coffee substances was recommended as a useful tool for accelerating the growth and strengthening the physiological activity of the mycelium.

구름버섯은 온대지역에서 흔히 발견되는 목재 부후균으로서 중요한 약용버섯의 일종이다. 본 연구에서는 커피박, 과립커피 및 과립 디카페인 커피의 구름버섯 균사체 생장에 미치는 영향을 조사하였다. 그 결과, 커피박은 10% 농도에서까지 그리고 과립커피의 경우 1% 미만에서 균사체 생육을 촉진시키는 것으로 확인되었다. 1% 커피박의 경우 무처리에 비해 10배 정도의 건조중량 증가가 측정됨으로써 구름균사체의 생육촉진제로서의 커피 효능을 확인할 수 있었다. 또한 커피는 균사체의 페놀화합물 및 항산화 효능 증대를 위한 유용 물질로 판단되었다.

Keywords

References

  1. Becker, E. M., Nissen, L. R. and Skibsted, L. H. 2004. Antioxidant evaluation protocols: Food quality or health effects. Eur. Food Res. Technol. 219:561-571. https://doi.org/10.1007/s00217-004-1012-4
  2. Boa, E. 2004. Wild edible fungi, a global overview of their use and importance to people. Non-wood Forest Products Series no. 17. FAO, Rome. 147 pp.
  3. Buysse, J. and Merckk, R. 1993. An improved colorimetric method to quantify sugar content of plant tissue. J. Exp. Bot. 44:1627-1629. https://doi.org/10.1093/jxb/44.10.1627
  4. Capannesi, C., Palchetti, I., Mascini, M. and Parenti, A. 2001. Electrochemical sensor and biosensor for polyphenols detection in olive oils. Food Chemy. 71:553562.
  5. Cheng, K. F. and Leung, P. C. 2008. General review of polysaccharopeptides (PSP) from T. versicolor: pharmacological and clinical studies. Cancer Ther. 6:117-130.
  6. Esquivel, P. and Jimenez, V. M. 2012. Functional properties of coffee and coffee by-products. Food Res. Int. 46:488495.
  7. Franca, A. S., Oliveira, L. S. and Ferreira, M. E. 2009. Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds. Desalination 249:267-272. https://doi.org/10.1016/j.desal.2008.11.017
  8. Hatano, T., Kagawa, H., Yasuhara, T. and Okuda, T. 1988. Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem. Pharm. Bull. 36:1090-1097.
  9. Hecimovic, I., Belscak-Cvitanovic, A., Horzic, D. and Komes. D. 2011. Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chem. 129:991-1000. https://doi.org/10.1016/j.foodchem.2011.05.059
  10. Machado, E. M. S., Rodriguez-Jasso, R. M., Teixeira, J. A. and Mussatto, S. I. 2012. Growth of fungal strains on coffee industry residues with removal of polyphenolic compounds. Biochem. Eng. J. 60:87-90. https://doi.org/10.1016/j.bej.2011.10.007
  11. Madhavi V. and Lele, S. S. 2009. Laccase: properties and applications. Bioresources 4:1694-1717.
  12. Minamisawa, M., Yoshida, S. and Takai, N. 2004. Determination of biologically active substances in roasted coffees using a diode-array HPLC system. Anal. Sci. 20:325-328. https://doi.org/10.2116/analsci.20.325
  13. Nebesny, E. and Budryn, G. 2003. Antioxidative activity of green and roasted coffee beans as influenced by convection and microwave roasting methods and content of certain compounds. Eur. Food Res. Technol. 217:157-63. https://doi.org/10.1007/s00217-003-0705-4
  14. Nkondjock, A., Ghadirian, P., Kotsopoulos, J., Lubinski, J., Lynch, H., Kim-Sing, C. and Horsman, D. 2006. Coffee consumption and breast cancer risk among BRCA1 and BRCA2 mutation carriers. Int. J. Cancer 118:103-107. https://doi.org/10.1002/ijc.21296
  15. Niseteo, T., Komes, D., Belsak-Cvitanovic, A., Horzic, D. and Budec, M. 2012. Bioactive composition and antioxidant potential of different commonly consumed coffee brews affected by their preparation technique and milk addition. Food Chem. 134:1870-877. https://doi.org/10.1016/j.foodchem.2012.03.095
  16. Palacios, I., Moro, C., Lozano, M., D'Arrigo, M., Gullamon, E., Garca-Lafuente, A. and Villares, A. 2011. Antioxidant properties of phenolic compounds occuring in edible mushrooms. Food Chem. 128:674-678. https://doi.org/10.1016/j.foodchem.2011.03.085
  17. Rancano, G., Lorenzo, M., Molares, N., Couto, S. R. and Sanroman, M. A. 2003. Production of laccase by Trametes versicolor in an airlift fermentor Process Biochem. 39:467- 473 https://doi.org/10.1016/S0032-9592(03)00083-9
  18. Saenger, M., Hartge, E. Werther, J. Ogada, T. and Siagi, Z. 2001. Combustion of coffee husks. Renew. Energ. 23:103-121. https://doi.org/10.1016/S0960-1481(00)00106-3
  19. Silva, M. A., Nebra, S. A., Machado, M. J. and Sanchez. C. G. 1998. The use of biomass residues in the Brazilian soluble coffee industry. Biomass Bioenerg. 14:457-467. https://doi.org/10.1016/S0961-9534(97)10034-4
  20. Simoes, J., Madureira, P., Nunes, F. M., Domingues, M. R. Vilanova, M. and Coimbra, M. A. 2009. Immunostimulatory properties of coffee mannans. Mol. Nut. Food Res. 53:1036- 1043. https://doi.org/10.1002/mnfr.200800385
  21. Sung, W. S. and Lee. D. G. 2010. Antifungal action of chlorogenic acid against pathogenic fungi, mediated by membrane disruption. Pure Appl. Chem. 82:219-226. https://doi.org/10.1351/PAC-CON-09-01-08
  22. Tokimoto, T., Kawasaki, N., Nakamura, T. Akutagawa, J. and Tanada. S. 2005. Removal of lead ions in drinking water by coffee grounds as vegetable biomass. J. Colloid Interf. Sci. 281:56-61. https://doi.org/10.1016/j.jcis.2004.08.083
  23. Vignoli, J. A., Bassoli, D. G. and Benassi, M. T. 2011. Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: The influence of processing conditions and raw material. Food Chem. 124:863-868. https://doi.org/10.1016/j.foodchem.2010.07.008

Cited by

  1. Effect of Coffee Grounds' Residue on the Growth and Chlorophyll Content of Korean Wheat Sprout vol.29, pp.2, 2014, https://doi.org/10.7841/ksbbj.2014.29.2.106
  2. Overview for Coffee Grounds Recycling Technology and Future Concerns vol.35, pp.7, 2018, https://doi.org/10.9786/kswm.2018.35.7.587