DOI QR코드

DOI QR Code

금강 지표수에서 LC-ESI-MS/MS에 의한 염소산이온의 극미량 분석

Determination of perchlorate in the Gum-River surface water by LC-ESI-MS/MS

  • 이영준 (국립환경과학원 금강물환경연구소) ;
  • 이준배 (국립환경과학원 금강물환경연구소) ;
  • 홍선화 (국립환경과학원 금강물환경연구소) ;
  • 김현지 (공주대학교 환경과학과) ;
  • 신호상 (공주대학교 환경교육과)
  • Lee, Young Joon (Geum River Environment Research Center, National Institute of Environmental Research) ;
  • Lee, Jun Bae (Geum River Environment Research Center, National Institute of Environmental Research) ;
  • Hong, Seon Haw (Geum River Environment Research Center, National Institute of Environmental Research) ;
  • Kim, Hyun-Ji (Department of Environmental Science, Kongju National University) ;
  • Shin, Ho-Sang (Department of Environmental Education, Kongju National University)
  • 투고 : 2012.08.28
  • 심사 : 2012.10.08
  • 발행 : 2012.12.25

초록

지표수 중에 과염소산이온을 LC-ESI-MS/MS을 사용하여 분석하였다. 시료는 단지 PTFE 필터를 사용하여 거른 후 LC-ESI-MS/MS 시스템에 직접 주입하여 분석하였다. 이 방법은 3% 이내의 정밀도를 보였고 정량한계는 0.17 ${\mu}g/L$이었다. 시료는 금강물 35 개 유역에서 2, 4, 6월에 각각 시료를 채취하였다. 그 결과 일반 하천수에서는 과염소산이온이 0.23-3.73 ${\mu}g/L$ (평균 0.20 ${\mu}g/L$) 농도범위로 15% 빈도로 검출되었고 공단 근처의 지표수에서는 0.36-25.10 ${\mu}g/L$ (평균 1.69 ${\mu}g/L$)로 36%의 빈도로 검출되었다.

A liquid chromatography-electrospray ionization-tandem mass spectrometry method (LC-ESI-MS/MS) was used for determining perchlorate in the Gum-River surface water. Sample was directly injected into LC-ESI-MS/MS after the filtrations using PTFE filter paper. The coefficient of variation of perchlorate was less than 3% and the limit of quantification was 0.17 ${\mu}g/L$. Water samples were collected from thirty-five basins of Gum-River on February, April and June 2012, respectively. As a result, perchlorate was detected in the concentration range of 0.23-3.73 ${\mu}g/L$ (mean 0.20 ${\mu}g/L$) in the frequency of 15% in general surface water and in the concentration range of 0.36-25.10 ${\mu}g/L$ (mean 1.69 ${\mu}g/L$) in the frequency of 36% in surface water samples near industry area.

키워드

참고문헌

  1. Wikipedia encyclopedia, http://en.wikipedia.org/wiki/Perchlorate, Last accessed on 25 July 2012.
  2. E. T. Urbansky, Biorem. J., 2, 81-95 (1998). https://doi.org/10.1080/10889869891214231
  3. E. T. Urbansky and M. R. Schock, J. Environ. Manage., 56, 79-95 (1999). https://doi.org/10.1006/jema.1999.0274
  4. W. E. Motzer, Environ. Forensics, 2, 301-311 (2001). https://doi.org/10.1006/enfo.2001.0059
  5. H. P. Wagner, B. V. Pepich, C. Pohl, D. Later, R. Joyce, K. Srinivasan, D. Thomas, A. Woodruff, B. DeBorba and D. J. Munch, J. Chromatogr. A, 1118(1), 85-93 (2006). https://doi.org/10.1016/j.chroma.2006.02.039
  6. A. B. Kirk, P. K. Martinelango, K. Tian, A. Dutta, E. E. Smith and P. K. Dasgupta, Environ. Sci. Technol., 39(7), 2011-2017 (2005). https://doi.org/10.1021/es048118t
  7. J. V. Dyke, K. Ito, T. Obitsu, Y. Hisamatsu, P. K. Dasgupta and B. C. Blount, Environ. Sci. Technol., 41(1), 88-92 (2007). https://doi.org/10.1021/es061429e
  8. Y. Li and E. J. George, Anal. Chem., 77(14), 4453-4458 (2005). https://doi.org/10.1021/ac0500986
  9. S. C. Wendelken, L. E. Vanatta, D. E. Coleman and D. J. Munch, J. Chromatogr. A, 1118(1), 94-99 (2006). https://doi.org/10.1016/j.chroma.2006.02.023
  10. S. A. Snyder, B. J. Vanderford and D. J. Rexing, Environ. Sci. Technol., 39(12), 4586-4593 (2005). https://doi.org/10.1021/es047935q
  11. Y. Shi, P. Zhang, Y. Wang, J. Shi, Y. Cai, S. Mou and G. Jiang, Environ. Int., 33(7), 955-962 (2007). https://doi.org/10.1016/j.envint.2007.05.007
  12. R. T. Wilkin, D. D. Fine and N. G. Burnett, Environ. Sci. Technol., 41(11), 3966-3971 (2007). https://doi.org/10.1021/es0700698
  13. C. J. Koester, H. R. Beller and R. U. Halden, Environ. Sci. Technol., 34(9), 1862-1864 (2000). https://doi.org/10.1021/es991209j
  14. M. L. Magnuson, E. T. Urbansky and C. A. Kelty, Anal. Chem., 72(1), 25-29 (2000). https://doi.org/10.1021/ac9909204
  15. A. Srinivasan and T. Viraraghavan, Int. J. Environ. Res. Public Health, 6(4), 1418-1442 (2009). https://doi.org/10.3390/ijerph6041418
  16. R. E. Tarone, L. Lipworth and J. K. McLaughlin, J. Occup. Environ. Med., 52(6), 653-660 (2010). https://doi.org/10.1097/JOM.0b013e3181e31955
  17. M. A. Greer, G. Goodman, R. C. Pleus and S. E. Greer, Environ. Health Perspect., 110(9), 927-937 (2002). https://doi.org/10.1289/ehp.02110927
  18. U.S. Environmental Protection Agency, Fact Sheet: Final Third Contamination Candidate List (CCL3), EPA Document No. 815-F-09-001, Washington, DC, September 2009.
  19. U.S. Environmental Protection Agency, Contaminant Information Sheets for the Final CCL3 Chemicals, EPA Document No. 815-R-09-012, Washington, DC, August 2009.
  20. U.S. Environmental Protection Agency, Interim Drinking Water Health Advisory for Perchlorate, EPA Document No. 822-R-08-025, Washington, DC, December 2008.
  21. U.S. Environmental Protection Agency, Drinking Water: Preliminary Regulatory Determination on Perchlorate, EPA Document No. EPA-HQ-OW-2008-0692, Washington, DC, October 2008.
  22. S. V. Khimchenko, L. P. Eksperiandova and A. B. Blank, J. Anal. Chem., 64(1), 14-17 (2009). https://doi.org/10.1134/S1061934809010043
  23. N. Pourreza and H. Z. Mousavi, J. Anal. Chem., 60(9), 816-818 (2005). https://doi.org/10.1007/s10809-005-0187-6
  24. G. Soledad, A. Isabel, A. O. Joaquyn, S-P. Concepcion and E. Rosario, Microchim. Acta, 143(1), 59-63 (2003). https://doi.org/10.1007/s00604-003-0040-2
  25. A. A. Ensafi and B. Rezaei, Analytical letters, 31(1), 167-177 (1998). https://doi.org/10.1080/00032719808001841
  26. D. B. Thorburn, M. D. Dunford and P. Sutthivaiyakit, Anal. Chim. Acta, 356(2/3), 141-143 (1997). https://doi.org/10.1016/S0003-2670(97)00445-5
  27. M. A. Mazloum, M. Jalayer and H. Naeimi, Anal. Bioanal. Chem., 381(6), 1186-1192 (2005). https://doi.org/10.1007/s00216-004-3011-5
  28. V. S. Hatzistavros and N. G. Kallithrakas-Kontos, Anal. Chem., 83(9) 3386-3391 (2011). https://doi.org/10.1021/ac103295a
  29. I. K. Kiplagat, T. K. Doan and P. Kub, Electrophoresis, 32(21), 3008-3015 (2011). https://doi.org/10.1002/elps.201100279
  30. J. C. Gertsch, S. D. Noblitt and D. M. Cropek, Anal. Chem., 82(9), 3426-3429 (2010). https://doi.org/10.1021/ac9029086
  31. X. A. Li, D. M. Zhou and J. J. Xu, Talanta, 75(1), 157- 162 (2008). https://doi.org/10.1016/j.talanta.2007.10.054
  32. A. V. Pirogov, A. V. Yurev and O. A. Shpigun, J. Anal. Chem., 58(8), 781-784 (2003). https://doi.org/10.1023/A:1025047913692
  33. H. Huang and G. A. Sorial, Chemosphere, 64(7), 1150- 1156 (2006). https://doi.org/10.1016/j.chemosphere.2005.11.044
  34. J. D. Lamb, D. Simpson and B. D. Jensen, J. Chromatogr. A, 1118(1), 100-105 (2006). https://doi.org/10.1016/j.chroma.2006.01.138
  35. L. Barron, P.N. Nesterenko and B. Paull, Anal. Chim. Acta, 567(1), 127-134 (2006). https://doi.org/10.1016/j.aca.2006.01.038
  36. Y. Liu and S. Mou, J. Chromatogr. A, 997(1/2), 225- 235 (2003). https://doi.org/10.1016/S0021-9673(03)00628-9
  37. K. Tian, P. K. Dasgupta and T. A. Anderson, Anal. Chem., 75(3), 701-706 (2003). https://doi.org/10.1021/ac026268l
  38. Y. Liu, S. Mou and S. Heberling, J. Chromatogr. A, 956(1/2), 85-91 (2002). https://doi.org/10.1016/S0021-9673(01)01507-2
  39. P. E. Jackson, S. Gokhale and T. Streib, J. Chromatogr. A, 888(1/2), 151-158 (2000). https://doi.org/10.1016/S0021-9673(00)00557-4
  40. P. E. Jackson, M. Laikhtman and J. S. Rohrer, J. Chromatogr. A, 850(1/2), 131-135 (1999). https://doi.org/10.1016/S0021-9673(99)00026-6
  41. H. C. Chen, W. T. Chen and W. H. Ding, Talanta, 79(2), 442-445 (2009). https://doi.org/10.1016/j.talanta.2009.04.002
  42. E. Hedrick and D. Munch, J. Chromatogr. A, 1039(1/2), 83-88 (2004). https://doi.org/10.1016/j.chroma.2004.03.077
  43. B. Ells, D. A. Barnett and R. W. Purves, J. Environ. Monit., 2(5), 393-397 (2000). https://doi.org/10.1039/b005601o
  44. R. Handy D. A. Barnett and R. W. Purves, J. Anal. At. Spectrom., 15(8), 907-911 (2000). https://doi.org/10.1039/b002306j
  45. M. L. Magnuson, E. T. Urbansky and C. A. Kelty, Talanta, 52(2), 285-291 (2000). https://doi.org/10.1016/S0039-9140(00)00342-8
  46. M. L. Magnuson, E. T. Urbansky and C. A. Kelty, Anal. Chem., 72(1), 25-29 (2000). https://doi.org/10.1021/ac9909204
  47. S. L. Lin, C. Y. Lo and M. R. Fuh, J. Chromatogr. A, 1246, 40-47 (2012). https://doi.org/10.1016/j.chroma.2012.02.014
  48. S. M. Backus, P. Klawuun and S. Brown, Chemosphere, 61(6), 834-843 (2005). https://doi.org/10.1016/j.chemosphere.2005.04.054
  49. H. H. Kim, I. S. Han, G. J. Jeong, H. Park, S. H. Han and W. S. Cho, J. KSEE., 32(4), 349-356 (2010).
  50. H. B. Kim, J. E. Oh, S. Y. Lee, J. W. Cho and S. Snyder, J. KSEE., 28(7), 776-781 (2006).
  51. C. A. SANCHEZ, R. I. KRIEGER, N. KHANDAKER, R. C. MOORE, K. C. HOLTS and L. L. NEIDEL, J. Agric. Food. Chem., 53, 5479-5486 (2005). https://doi.org/10.1021/jf050380d
  52. K. Kosaka, M. Asami, Y. Matsuoka, M. Kamoshita and K. Shoichi, Water Res, 41, 3474-3482 (2007). https://doi.org/10.1016/j.watres.2007.05.011