DOI QR코드

DOI QR Code

Additive Effects on Sintering of Si/SiC Mixtures

Si/SiC 혼합물의 소결특성에 미치는 첨가제의 영향

  • 김수룡 (에너지환경본부, 한국세라믹기술원) ;
  • 권우택 (에너지환경본부, 한국세라믹기술원) ;
  • 김영희 (에너지환경본부, 한국세라믹기술원) ;
  • 김종일 (에너지환경본부, 한국세라믹기술원) ;
  • 이윤주 (에너지환경본부, 한국세라믹기술원) ;
  • 이현재 ((주)엔바이온) ;
  • 오세천 (공주대학교)
  • Received : 2012.10.17
  • Accepted : 2012.12.03
  • Published : 2012.12.27

Abstract

The effects of clay, aluminum hydroxide, and carbon powder on the sintering of a Si/SiC mixture from photovoltaic silicon-wafer production were investigated. Sintering temperature was fixed at $1,350^{\circ}C$ and the sintered bodies were characterized by SEM and XRD to analyze the microstructure and to measure the apparent porosity, absorptivity, and apparent density. The XRD peak intensity of SiC in the sintered body was increased by adding 5% carbon to the Si/SiC mixture. From this result, it is confirmed that Si in the Si/SiC mixture had reacted with the added carbon. Addition of aluminum hydroxide decreased the cristobalite phase and increased the stable mullite phase. The measurement of the physical properties indicates that adding carbon to the Si/SiC mixture enables us to obtain a dense sintered body that has high apparent density and low absorptivity. The sintered body produced from the Si/SiC mixture with aluminum hydroxide and carbon powder as sintering additives can be applied to diesel particulate filters or to heat storage materials, etc., since it possesses high thermal conductivity, and anticorrosion and antioxidation properties.

Keywords

References

  1. W. T. Kwon, S. R. Kim, Y. H. Kim, Y. J. Lee, J. Y. Won, W. K. Park and S. C. Oh, Mater. Sci. Forum, 724, 49 (2012). https://doi.org/10.4028/www.scientific.net/MSF.724.49
  2. U. Setiowati and S. Kimura, J. Am. Ceram. Soc., 80(3), 757 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb02893.x
  3. V. M. Kevorkijan, M. Komac and D. Kolar, J. Mater. Sci., 27, 2705 (1992). https://doi.org/10.1007/BF00540693
  4. E. J. Jung, Y. Kim, Y. J. Lee, S. R. Kim and W. T. Kwon, J. Kor. Inst. Resources Recycling, 19(5), 44 (2010) (in Korean).
  5. M. A. Mulla and V. D. Krstic, Am. Ceram. Soc. Bull., 70, 439 (1991).
  6. S. K. Lee, Y. C. Kim and C. H. Kim, J. Mater. Sci., 29, 5321 (1994). https://doi.org/10.1007/BF01171542
  7. S. Prochazka and R. M. Scanlan, J. Am. Ceram. Soc., 58(1-2), 72 (1975). https://doi.org/10.1111/j.1151-2916.1975.tb18990.x
  8. N. Altinkok, A. Demir and I. Ozsert, Compos. Appl. Sci. Manuf., 34, 577(2003). https://doi.org/10.1016/S1359-835X(03)00125-8
  9. S. Elomari, R. Boukhili, M. D. Skibo and J. Masounave, J. Mater. Sci., 30, 3037 (1995). https://doi.org/10.1007/BF01209214
  10. K. S. Yun, B. S. Yang, J. -H. Lee and C. W. Won, Kor. J. Mater. Res., 12(1), 48 (2002) (in Korean). https://doi.org/10.3740/MRSK.2002.12.1.048
  11. A. Palermo, J. P. H. Vazquez, A. F. Lee, M. S. Tikhov and R. M. Lambert, J. Catal., 177, 259 (1998). https://doi.org/10.1006/jcat.1998.2109
  12. F. J. Klug, S. Prochazka and R. H. Doremus, J. Am. Ceram. Soc., 70(10), 750 (1987). https://doi.org/10.1111/j.1151-2916.1987.tb04875.x

Cited by

  1. Microstructures and thermal conductivities of reaction sintered SiC ceramics vol.113, pp.6, 2014, https://doi.org/10.1179/1743676114Y.0000000168