DOI QR코드

DOI QR Code

Effects of Green Pepper (Capsicum annuum var.) on Antioxidant Activity and Induction of Apoptosis in Human Breast Cancer Cell Lines

품종별 청고추의 항산화 효과 및 유방암 세포주에서의 세포 사멸 연구

  • Yoon, Hyo-Jin (Department of Food and Nutrition, Seoul National University) ;
  • Lee, Seul (Department of Food and Nutrition, Seoul National University) ;
  • Hwang, In-Kyeong (Department of Food and Nutrition, Seoul National University)
  • 윤효진 (서울대학교 식품영양학과) ;
  • 이슬 (서울대학교 식품영양학과) ;
  • 황인경 (서울대학교 식품영양학과)
  • Received : 2012.06.21
  • Accepted : 2012.10.18
  • Published : 2012.12.31

Abstract

This study investigated flavonoid, total phenol, total flavonoid content, antioxidant and antiproliferative activity on human breast cancer cells (MCF-7, MDA-MB-231). Four varieties of Korean green peppers (KP: kkuri pepper, PP: phut pepper, CP: cheongyang pepper, OP: ohi pepper) and one foreign green pepper (JP: jalapeno) were used. The contents of luteolin, quercetin and apigenin, which are abundant flavonoids in green pepper, were the highest in KP. Also, the contents of total phenol, and total flavonoids were the highest in KP, followed by CP, JP, PP, and OP (KP: total phenol $13.29{\pm}0.45$ mg GAE/g D.W., total flavonoid $7.02{\pm}0.13$ mg QE/g D.W. In DPPH ABTS radical-scavenging activity, KP showed the most potent antioxidant activity. In the result of viability in human breast cancer cells, KP had the highest antiproliferative effect. These results suggest that green peppers have significant antioxidant activity and can be a possible candidate for treatment of breast cancer.

본 연구에서는 국내외 품종별 green pepper에 있는 총 폴리페놀, 총 플라보노이드를 비롯하여 고추에 주로 함유된 flavonoids인 quercetin, luteolin, apigenin의 양을 측정하고, 이들로 인한 항산화 효과와 더불어 유방암 세포에서의 세포 증식 억제능을 측정하였다. 이에 국내산 green pepper의 flavonoids에 대한 기초 자료를 제공하고, 이들의 항산화 및 유방암을 비롯한 다양한 질병의 예방에 있어 잠재적인 가치를 알아보고자 하였다. 풋고추, 청양고추, 꽈리고추, 오이고추, 할라피뇨 5종의 기능성 성분으로 flavonoids 와 vitamin C 함량을 측정한 결과, 주요 플라보노이드는 luteolin, quercetin, apigenin 이었으며, 대부분의 고추에서 luteolin의 함량이 가장 높고, quercetin, apigenin의 순으로 함유되어 있었다. 5가지 품종의 고추 가운데 꽈리고추에서 luteolin, quercetin, apigenin의 함량이 유의적으로 가장 높게 나타났다. 비타민 C의 함량은 꽈리고추가 가장 높았으며, 청양고추, 할라피뇨, 풋고추, 오이고추의 순으로 나타났다. 5가지 품종의 green pepper에 함유된 총 폴리페놀의 양은 할라피뇨가 가장 높게 측정되었으며 다음으로 꽈리고추가 높은 함량이 측정되었으나, 품종간의 유의적이 차이는 나타나지 않았다. 총 플라보노이드의 함량은 꽈리고추가 유의적으로 가장 높게 측정되었고, 할라피뇨가 가장 적게 측정되었다. Green pepper 추출물의 DPPH, ABTS 자유기 소거 활성능을 측정한 결과, 농도에 따라 통계적으로 유의적인 효과를 보였다. 품종별로 살펴보면, 5가지 품종 중에서 꽈리고추의 소거 활성능이 모든 농도에서 가장 높은 결과를 나타내었다. Green pepper 추출물의 세포 증식 억제 효과를 측정하기 위하여 유방암 세포 MCF-7과 MDA-MB-231 세포를 사용한 결과, 두 세포에서 모두 농도 의존적으로 세포 증식 억제 효과가 있는 것을 확인할 수 있었다. 기능성 성분과 함께 라디칼 소거 활성능이 가장 좋았던 꽈리고추 추출물에서 가장 낮은 IC50 값(MCF-7: $826.07{\mu}g/mL$, MDA-MB-231: $719.58{\mu}g/mL$)을 나타내어 다른 품종에 비해 우수한 증식 억제효과를 보였다. 꽈리고추 추출물을 처리하여 유방암 세포주 MCF-7에서의 apoptosis 유도 단백질을 측정한 결과, Bax, cleaved caspase-3, PARP가 발현되어 꽈리고추 추출물이 apoptosis 형태의 세포 사멸을 유도하는 것을 확인하였다. 이상의 결과들을 종합하여 보면, green pepper에는 luteolin, quercetin, apigenin의 flavonoids를 비롯하여 vitamin C와 같은 기능성 성분과 페놀 화합물이 풍부하게 함유되어 있으며, 항산화 및 항암 효과가 있음을 확인하였다. 특히 꽈리고추는 5가지 품종의 green pepper 가운데 가장 우수한 항산화 및 항암능을 나타내었다. 또한 apoptosis 형태의 세포 사멸을 유도하는 것으로 보아 유방암의 치료 및 예방에 잠재적인 효과를 기대해 볼 수 있을 것이다. 하지만 in vitro 실험의 한계점이 있을 것으로 생각되며, in vivo에 대한 추가적인 연구가 이루어져야 할 것으로 사료된다.

Keywords

References

  1. Surh YJ, Lee SS. Capsaicin, a double-edged sword: toxicity, metabolism, and chemopreventive potential. Life Sci. 56: 1845-1855 (1995) https://doi.org/10.1016/0024-3205(95)00159-4
  2. Song W, Derito CM, Liu K, He S, Liu RH. Cellular antioxidant activity of common vegetables. J. Agr. Food Chem. 58: 6621-6629 (2010) https://doi.org/10.1021/jf9035832
  3. Kim JP, Kim EH, Kim SU, Kwon TK, Choi KS. Capsaicin sensitizes malignant glioma cells to TRAIL-mediated apoptosis via DR5 upregulation and survivin downregulation. Carcinogenesis. 31: 367-375 (2010) https://doi.org/10.1093/carcin/bgp298
  4. Surh YJ, Han SS, Keum YS, Seo HJ, Lee SS. Inhibitory effects of curcumin and capsaicin on phorbol ester-induced activation of enkaryotic transcription factors, NF-Kappa and AP-1. Biofactors. 107-112 (2000)
  5. Dixon RA. The phytoalex in response: elicitation, signalling and control of host gene expression. Biological Reviews. 61: 239-291 (1986) https://doi.org/10.1111/j.1469-185X.1986.tb00719.x
  6. Laks PE, Pruner MS. Flavonoid biocides: structure/activity relations of flavonoid phytoalex in analogues. Phytochemistry. 28: 87-91 (1989) https://doi.org/10.1016/0031-9422(89)85015-0
  7. Keller RB. Flavonoids: biosynthesis, biological effects and dietary sources. Nova science publishers. Hauppauge, NY, USA. pp. 24-52 (2009)
  8. Havesteen B. Flavonoids, a class of natural products of high pharmacological potency. Biochem. Pharmacol. 32: 1141-1148 (1983) https://doi.org/10.1016/0006-2952(83)90262-9
  9. Verma AK, Johnson JA, Gould MN. Inhibition of 7,12-dimethylbenz( a)anthracene-and af-nitrosomethylurea-induced rat mammary cancer by dietary flavonol quercetin. Cancer Res. 48: 5754-5758 (1988)
  10. Hosokawa N, Hirayoshi K, Nakai A, Hosokawa Y, Marui N, Yoshida M, Sakai T, Nishino H, Kawai K. Flavonoids inhibit the expression of heat shock proteins. Cell Struct Funct. 15: 393-401 (1990) https://doi.org/10.1247/csf.15.393
  11. Laughton MJ, Evans PJ, Moroney MA, Hoult JRS, Halliwell B. Inhibition of mammalian 5-lipoxygenase and cyclo-oxygenase by flavonoids and phenolic dietary additives: relationship to antioxidant activity and to iron ion-reducing ability. Biochemical Pharmacology. 42: 1673-1681 (1991) https://doi.org/10.1016/0006-2952(91)90501-U
  12. Ratna WN, Simonelli JA. The action of dietary phytochemicals quercetin, catechin, resveratrol and naringenin on estrogen-mediated gene expression. Life Sci. 70: 1577-1589 (2002) https://doi.org/10.1016/S0024-3205(01)01531-4
  13. Schlachterman A, Valle F, Wall KM, Azios NG, Castillo L, Morell L, Washington AV, Cubano LA, Dharmawardhane SF. Combined resveratrol, quercetin, and catechin treatment reduces breast tumor growth in a nude mouse model. Transl. Oncol. 1: 19-27 (2008) https://doi.org/10.1593/tlo.07100
  14. So FV, Guthrie N, Chambers AF, Carroll KK. Inhibition of proliferation of estrogen receptor-positive MCF-7 human breast cancer cells by flavonoids in the presence and absence of excess estrogen. Cancer Lett. 112: 127-133 (1997) https://doi.org/10.1016/S0304-3835(96)04557-0
  15. Baila JC, Varnata F, Nicolasb JC, Habriouxa G. Estrogenic and antiproliferative activities on MCF-7human breast cancer cells by flavonoids. Cancer Lett. 130(1-2): 209-216 (1998) https://doi.org/10.1016/S0304-3835(98)00141-4
  16. Wang L, Ling Y, Chen Y, Li CL, Feng F, You QD, Lu L, Guo QL. Flavonoid baicalein suppresses adhesion, migration and invasion of MDA-MB-231 human breastcancer cells. Cancer Lett. 297: 42-48 (2010) https://doi.org/10.1016/j.canlet.2010.04.022
  17. Choi EJ, Kim GH. Apigenin induces apoptosis through a mitochondria/ caspase-pathway in human breast cancer MDA-MB-453 cells. J. Clin. Biochem. Nutr. 44: 260-265 (2009) https://doi.org/10.3164/jcbn.08-230
  18. National Cancer Information Center. Cancer incidence. Available from: http://www.cancer.go.kr/cms/statics/incidence/index.html. Accessed Jun. 6, 2012.
  19. Stewart BW, Kleihues P. World cancer report lyon: WHO/International agency for research on cancer. 20: 175-178 (2003)
  20. Jemal A, Murray T, Ward E, Samuels A, Ram C, Ghafoor A, Feuer E, Thun M Cancer statistics. CA-Cancer J. Clin. 55: 10-30 (2005)
  21. Ministry of Health & Welfare. Annual report of the central cancer registry in Korea. Ministry of Health & Welfare, Seoul, Korea. pp. 5-7 (2005)
  22. The department of health care services (DHCS). Breast cancer review: Detection and screening. Available from http://qap.sdsu.edu/education/bcrl/Bcrl_detectscreen/bcrl_detectscreen_index.html. Accessed Jun. 20, 2012.
  23. Jhons T, Romeo JT. Functionality of food phytochemicals, Recent Adv. phytochem. 33: 133-159 (1999)
  24. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell. Dev. Biol. 15: 269-290 (1999) https://doi.org/10.1146/annurev.cellbio.15.1.269
  25. Reed JC. Double identity for proteins of the Bcl-2 family. Nature. 387: 773-776 (1997) https://doi.org/10.1038/42867
  26. Schuler M, Green DR. Mechanisms of p53-dependent. apoptosis. Biochem. Soc. Trans. 29: 684-688 (2001) https://doi.org/10.1042/BST0290684
  27. Reed JC, Korsmeyer SJ, Xiao Y, Yang E, Zha J, Sedlak T, Oltvai Z. Bcl-2 and the regulation of programmed cell death. Cell. 74: 609619 (1994)
  28. Michael GL, Hertog ML, Hollman P, Venema DP. Optimization of a quantitative HPLC determination of potentially anticarcinogenic flavonoids in vegetables and fruits. J. Agric. Food Chem. 40: 1591-1598 (1992) https://doi.org/10.1021/jf00021a023
  29. Singleton VL, Joseph A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Viticult. 16(3): 144-158 (1965)
  30. Meda A. Lamien CE, Romito M, Millogo J, Nacoulma OG. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavening activity. Food Chem. 91(3): 571-577 (2005) https://doi.org/10.1016/j.foodchem.2004.10.006
  31. Berg RVD, Haenen GRMM, Berg HVD, Bast A. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 66(4): 511-517 (1999) https://doi.org/10.1016/S0308-8146(99)00089-8
  32. Lee Y, Howard LR, Villalon B. Flavonoids and antioxidant activity of fresh pepper (Capsicum annuum) cultivars. J. Food Sci. 60: 473-476 (1995) https://doi.org/10.1111/j.1365-2621.1995.tb09806.x
  33. Kwon JE. Determination of biological activity on methanol extracts of capsicum annuum L. from different varieties. MS thesis, Gyeongbuk National University, Daegu, Korea (2011)
  34. Conforti F, Statti GA, Menichini F. Chemical and biological variability of hot pepper fruits (Capsicum annuum var. acuminatum L.) in relation to maturity stage. Food Chem. 102: 1096-1104 (2007)
  35. Yoo KM, Lee KW, Park JB, Lee HJ, Hwang IK. Variation in major antioxidants and total antioxidant activity of Yuzu (Citrus junos Sieb ex Tanaka) during maturation and between cultivars. J. Agric. Food Chem. 52: 5907-5913 (2004) https://doi.org/10.1021/jf0498158
  36. Cho BC. The effects of growing periods and climatic factors on the characteristics red pepper (Capsicum annuum L.). PhD thesis, Korea University, Seoul, Korea (2010)
  37. Mozafar A. Plant vitamins: agronomic, physiological and nutritional aspects. CRC press, Boca Raton, Fl, USA. pp. 2-5 (1994)
  38. Sviribeley JL, Szent-Gyorgyi A. The chemical structure of vitamin C. Biochem. J. 27: 100-104 (1933)
  39. Markus F, Daood HG, Kapitny J, Biacs PA. Change in the carotenoid and antioxidant content of spice red pepper (paprika) as a function of ripening and some technological factors. J. Agric. Food Chem. 47: 100-107 (1999) https://doi.org/10.1021/jf980485z
  40. Pellegrini N, Serafini M, Colombi B, Rio DD, Salvatore S, Bianchi M, Brighenti F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J. Nutr. 133: 2812-2819 (2003)
  41. Stoner GD, Mukhtar H. Polyphenols as cancer chemopreventive agents. J. Cell Biochem. 59: 169-180 (1995) https://doi.org/10.1002/jcb.240590822
  42. Vijayaa K, Ananthan S, Nalinib R. Antibacterialeffect of theaflavin, polyphenon 60 (Camellia sinensis) and Euphorbia hirta on Shigella spp.-a cell culture study. J. Ethnopharmacol. 49: 115-118 (1995) https://doi.org/10.1016/0378-8741(95)90039-X
  43. Hattori M, Kusumoto IT, Namba T, Ishigami T, Hara Y. Effect of tea polyphenols on glucosyltransferase from streptococcus mutans. Chem. Pharm. Bulletin. 38: 717-720 (1990) https://doi.org/10.1248/cpb.38.717
  44. Khnau J. The flavonoids: a class of semi-essential food components: their role in human nutrition. World Rev. Nutr. Diet. 24: 117-191 (1976)
  45. Chun OK, Kim DO, Smith N, Schroeder D, Han JT, Lee CY. Daily consumption of phenolics and total antioxidant capacity from fruit and vegetables in the American diet. J. Sci. Food Agr. 85: 1715-1724 (2005) https://doi.org/10.1002/jsfa.2176
  46. Winston GW, Giulioz RT. Prooxidant and antioxidant in aquatic organisms. Aquat. Toxicol. 19: 137-161 (1991) https://doi.org/10.1016/0166-445X(91)90033-6
  47. Chen L, Hwang JE, Gu KM, Kim JH, Choi BR, Song KS, Park YM, Kang YH. Comparative study of antioxidant effects of five korean varieties red pepper (Capsicum annuum L) extracts from various parts including placenta, stalk, and pericarp. Food Sci. Biotechnol. 21: 715-721 (2012) https://doi.org/10.1007/s10068-012-0093-2
  48. Bor JY, Chen HY, Yen GC. Evaluation of antioxidant activity and inhibitory effect on nitric oxide production of some common vegetables. J. Agric. Food Chem.. 54: 1680-1686 (2006) https://doi.org/10.1021/jf0527448
  49. Yoo KM, Kim DO, Lee CY. Evaluation of different methods of antioxidant measurement. Food Sci. Biotechnol. 16: 177-182 (2007)
  50. Hanasaki Y, Ogawa S, Fukui S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radical Bio. Med. 16: 845-850 (1994) https://doi.org/10.1016/0891-5849(94)90202-X
  51. Lee SN, Kang KJ. The effect of blueberry extract on gene expressions related to apoptosis in human breast cancer MCF7 cells. J. East Asian Soc. Dietary Life. 20: 30-36 (2010)
  52. Levy SM, Herberman RB, Maluish AM. Prognostic risk assessment in primary breast cancer by behavioral and immunological parameters. Health Psychol. 4: 99-113 (1985) https://doi.org/10.1037/0278-6133.4.2.99
  53. Lerner LJ, Jordan VC. Development of antiestrogens and their use in breast cancer: eighth cain memorial award lecture. Cancer Res. 50: 4177-4189 (1990)
  54. Rochefort H, Capony F, Garcia M, Cavaills V, Freiss G, Chambon M, Morisset M, Vignon F. Estrogen-induced lysosomal proteases secreted by breast cancer cells: A role in carcinogenesis?. J. Cell. Biochem. 35: 17-29 (1987) https://doi.org/10.1002/jcb.240350103
  55. Kwon SH, Kim CN, Kim CY, Kwon ST, Park KM, Hwangbo S. Antitumor activities of protein-bound polysaccharide extracted from mycelia of mushroom. Korean J. Food Nutr. 16: 15-21 (2003)
  56. Chiarugi V, Magnelli L, Turchetti A, Cinelli M, Cavari S, Ruggiero M. Cell survival and death programmes. Pharmacol. Res. 29: 101-110 (1994) https://doi.org/10.1016/1043-6618(94)80034-0
  57. Nagata S. Apoptosis by death factor. Cell. 88: 355-365 (1997) https://doi.org/10.1016/S0092-8674(00)81874-7
  58. Gross A, McDonnell JM, Korsmeyer SJ. Bcl-2 family members and the mitochondria in apoptosis. Gene Dev. 13: 1899-1911 (1999) https://doi.org/10.1101/gad.13.15.1899
  59. Gorman A, Hirt U, Orrenius S, Ceccatelli S. Dexamethasone pretreatment interferes with apoptotic death in glioma cells. Neuroscience. 96: 417-425 (2000) https://doi.org/10.1016/S0306-4522(99)00565-5
  60. Ruvo C, Amodio R, Algeri S, Martelli N, Intilangelo A, D'Ancona G, Esposito E. Nutritional antioxidants as antidegenerative agents, Int. J. Devl. Neuroscience. 18: 359-366 (2000) https://doi.org/10.1016/S0736-5748(00)00011-3
  61. MacDonald-Wicks LK, Wood LG, Garg ML. Methodology for the determination of biological antioxidant capacity in vitro: a review. J. Sci. Food Agr. 86: 2046-2056 (2006) https://doi.org/10.1002/jsfa.2603
  62. Biglari F, Abbas FM, AlKarkhi AM. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem. 107: 1636-1641 (2008) https://doi.org/10.1016/j.foodchem.2007.10.033
  63. Kim SM, Cho YS, Sung SK, Lee IG, Lee SH, Kim DG. Antioxidative and nitrite scavenging activity of pine needle and green tea extracts. Korean J. Food Sci. Ani. Resour. 22: 13-19 (2002)
  64. Sheikh MS, Shao AM, Li XS, Ordonez JV, Conley BA, Wu S, Dawson MI, Han QX, Chao WR, Quick T, Niles RM, Fontana JA. N-(4-hydroxyphenyl)retinamide (4-HPR)-mediated biological actions involve retinoid receptor-independent pathways in human breast carcinoma. Carcinogenesis. 16: 2477-2486 (1995) https://doi.org/10.1093/carcin/16.10.2477
  65. Wanga X, Yuana S, Wanga J, Lina P, Liub G, Lua Y, Zhanga J, Wangc W, Weid Y. Anticancer activity of litchi fruit pericarp extract against human breast cancer in vitro and in vivo. Toxicol. Appl. Pharm. 215: 166-178 (2006)
  66. Stoner GD. Polyphenols as cancer chemopreventive agents. J. Cell. Biochem. 59: 169-180 (2004)

Cited by

  1. Comparison Study of Three Varieties of Red Peppers in Terms of Total Polyphenol, Total Flavonoid Contents, and Antioxidant Activities vol.45, pp.5, 2016, https://doi.org/10.3746/jkfn.2016.45.5.765
  2. Cytotoxicity of Extracts from Korean Pepper (Capsicum annuum L.) by Extraction Solvents and Plant Parts vol.22, pp.5, 2014, https://doi.org/10.7783/KJMCS.2014.22.5.369
  3. Physicochemical characteristics and antioxidant activity of the organic green peppers vol.22, pp.4, 2015, https://doi.org/10.11002/kjfp.2015.22.4.585
  4. Antioxidant activity and PC12 cell protective effect of onion flesh and peel(Allium cepa L.) fraction on oxidative stress vol.49, pp.2, 2015, https://doi.org/10.14397/jals.2015.49.2.83