DOI QR코드

DOI QR Code

Roles for the lipid-signaling enzyme MitoPLD in mitochondrial dynamics, piRNA biogenesis, and spermatogenesis

  • Gao, Qun (Department of Pharmacology & Center for Developmental Genetics, Stony Brook University) ;
  • Frohman, Michael A. (Department of Pharmacology & Center for Developmental Genetics, Stony Brook University)
  • Accepted : 2012.01.11
  • Published : 2012.01.31

Abstract

Phospholipase D (PLD), a superfamily of signaling enzymes that most commonly generate the lipid second messenger Phosphatidic Acid (PA), is found in diverse organisms from bacteria to man and functions in multiple cellular pathways. A fascinating member of the family, MitoPLD, is anchored to the mitochondrial surface and has two reported roles. In the first role, MitoPLD-generated PA regulates mitochondrial shape through facilitating mitochondrial fusion. In the second role, MitoPLD performs a critical function in a pathway that creates a specialized form of RNAi required by developing spermatocytes to suppress transposon mobilization during meiosis. This spermatocyte-specific RNAi, known as piRNA, is generated in the nuage, an electron-dense accumulation of RNA templates and processing proteins that localize adjacent to mitochondria in a structure also called intermitochondrial cement. In this review, we summarize recent findings on these roles for MitoPLD functions, highlighting directions that need to be pursued to define the underlying mechanisms.

Keywords

References

  1. Braschi, E. and McBride, H. M. (2010) Mitochondria and the culture of the Borg: understanding the integration of mitochondrial function within the reticulum, the cell, and the organism. Bioessays 32, 958-966. https://doi.org/10.1002/bies.201000073
  2. Frohman, M. A. (2010) Mitochondria as integrators of signal transduction and energy production in cardiac physiology and disease. J. Mol. Med. 88, 967-970. https://doi.org/10.1007/s00109-010-0662-x
  3. Chan, D. C. (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125, 1241-1252. https://doi.org/10.1016/j.cell.2006.06.010
  4. Liesa, M., Palacin, M. and Zorzano, A. (2009) Mitochondrial dynamics in mammalian health and disease. Physiol. Rev. 89, 799-845. https://doi.org/10.1152/physrev.00030.2008
  5. Choi, S. Y., Huang, P., Jenkins, G. M., Chan, D. C., Schiller, J. and Frohman, M. A. (2006) A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat. Cell. Biol. 8, 1255-1262. https://doi.org/10.1038/ncb1487
  6. Huang, H. and Frohman, M. A. (2009) Lipid signaling on the mitochondrial surface. Biochim. Biophys. Acta 1791, 839-844. https://doi.org/10.1016/j.bbalip.2009.05.012
  7. Aravin, A. A. and Chan D. C. (2011) piRNAs meet mitochondria. Dev. Cell 20, 287-288. https://doi.org/10.1016/j.devcel.2011.03.003
  8. Huang, H., Gao, Q., Peng, X., Choi, S. Y., Sarma, K., Ren, H., Morris, A. J. and Frohman, M. A. (2011) piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev. Cell 20, 376-387. https://doi.org/10.1016/j.devcel.2011.01.004
  9. Watanabe, T., Chuma, S., Yamamoto, Y., Kuramochi- Miyagawa, S., Totoki, Y., Toyoda, A., Hoki, Y., Fujiyama, A., Shibata, T., Sado, T., Noce, T., Nakano, T., Nakatsuji, N., Lin, H. and Sasaki, H. (2011) MitoPLD Is a Mitochondrial Protein Essential for Nuage Formation and piRNA Biogenesis in the Mouse Germline. Developmental Cell 20, 364-375. https://doi.org/10.1016/j.devcel.2011.01.005
  10. Pane, A., Wehr, K. and Schupbach, T. (2007) Zucchini and squash encode two putative nucleases required for rasiRNA production in the Drosophila germline. Dev. Cell 12, 851-862. https://doi.org/10.1016/j.devcel.2007.03.022
  11. Siomi, M. C., Sato, K., Pezic, D. and Aravin, A. A. (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat. Rev. Mol. Cell. Biol. 12, 246-258. https://doi.org/10.1038/nrm3089
  12. O'Donnell, K. A., Burns, K. H., and Boeke, J. D. (2008) A descent into the nuage: the maelstrom of transposon control. Dev. Cell 15, 179-181. https://doi.org/10.1016/j.devcel.2008.07.016
  13. Lim, A. K. and Kai, T. (2007) Unique germ-line organelle, nuage, functions to repress selfish genetic elements in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 104, 6714-6719. https://doi.org/10.1073/pnas.0701920104
  14. Carmell, M. A., Girard, A., van de Kant, H. J., Bourc'his, D., Bestor, T. H., de Rooij, D. G. and Hannon, G. J. (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell. 12, 503-514. https://doi.org/10.1016/j.devcel.2007.03.001
  15. Frost, R. J., Hamra, F. K., Richardson, J. A., Qi, X., Bassel-Duby, R. and Olson, E. N. (2010) MOV10L1 is necessary for protection of spermatocytes against retrotransposons by Piwi-interacting RNAs. Proc. Natl. Acad. Sci. U.S.A. 107, 11847-11852. https://doi.org/10.1073/pnas.1007158107
  16. Aravin, A. A., van der Heijden, G. W., Castaneda, J., Vagin, V. V., Hannon, G. J. and Bortvin, A. (2009) Cytoplasmic compartmentalization of the fetal piRNA pathway in mice. PLoS Genet. 5, p.e1000764. https://doi.org/10.1371/journal.pgen.1000764
  17. Shoji, M., Tanaka, T., Hosokawa, M., Reuter, M., Stark, A., Kato, Y., Kondoh, G., Okawa, K., Chujo, T., Suzuki, T., Hata, K., Martin, S. L., Noce, T., Kuramochi-Miyagawa, S., Nakano, T., Sasaki, H., Pillai, R. S., Nakatsuji, N. and Chuma, S. (2009) The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. Dev. Cell 17, 775-787. https://doi.org/10.1016/j.devcel.2009.10.012
  18. Chuma, S., Hosokawa, M., Kitamura, K., Kasai, S., Fujioka, M., Hiyoshi, M., Takamune, K., Noce, T. and Nakatsuji, N. (2006) Tdrd1/Mtr-1, a tudor-related gene, is essential for male germ-cell differentiation and nuage/germinal granule formation in mice. Proc. Natl. Acad. Sci. U.S.A. 103, 15894-15899. https://doi.org/10.1073/pnas.0601878103
  19. Kuramochi-Miyagawa, S., Watanabe, T., Gotoh, K., Takamatsu, K., Chuma, S., Kojima-Kita, K., Shiromoto, Y., Asada, N., Toyoda, A., Fujiyama, A., Totoki, Y., Shibata, T., Kimura, T., Nakatsuji, N., Noce, T., Sasaki, H. and Nakano, T. (2010) MVH in piRNA processing and gene silencing of retrotransposons. Genes Dev. 24, 887-892. https://doi.org/10.1101/gad.1902110
  20. Ma, L., Buchold, G. M., Greenbaum, M. P., Roy, A., Burns, K. H., Zhu, H., Han, D. Y., Harris, R. A., Coarfa, C., Gunaratne, P. H., Yan, W. and Matzuk, M. M. (2009) GASZ is essential for male meiosis and suppression of retrotransposon expression in the male germline. PLoS Genet. 5, e1000635. https://doi.org/10.1371/journal.pgen.1000635
  21. Jenkins, G. M. and Frohman, M. A. (2005) Phospholipase D: a lipid centric review. Cell Mol. Life Sci. 62, 2305-2316. https://doi.org/10.1007/s00018-005-5195-z
  22. Huang, P. and Frohman, M. A. (2007) The potential for phospholipase D as a new therapeutic target. Expert Opin. Ther. Targets 11, 707-716. https://doi.org/10.1517/14728222.11.5.707
  23. Brindley, D. N., Pilquil, C., Sariahmetoglu, M. and Reue, K. (2009) Phosphatidate degradation: phosphatidate phosphatases (lipins) and lipid phosphate phosphatases. Biochim. Biophys. Acta. 1791, 956-961. https://doi.org/10.1016/j.bbalip.2009.02.007
  24. Cazzolli, R., Shemon, A. N., Fang, M. Q. and Hughes, W. E. (2006) Phospholipid signalling through phospholipase D and phosphatidic acid. IUBMB Life 58, 457-461. https://doi.org/10.1080/15216540600871142
  25. Colley, W. C., Sung, T. C., Roll, R., Jenco, J., Hammond, S. M., Altshuller, Y., Bar-Sagi, D., Morris, A. J. and Frohman, M. A. (1997), Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr. Biol. 7, 191-201. https://doi.org/10.1016/S0960-9822(97)70090-3
  26. Hammond, S. M., Altshuller, Y. M., Sung, T. C., Rudge, S. A., Rose, K., Engebrecht, J., Morris, A. J. and Frohman, M. A. (1995) Human ADP-ribosylation factor-activated phosphatidylcholine- specific phospholipase D defines a new and highly conserved gene family. J. Biol. Chem. 270, 29640-29643. https://doi.org/10.1074/jbc.270.50.29640
  27. Uesugi, Y. and Hatanaka, T. (2009) Phospholipase D mechanism using Streptomyces PLD. Biochim. Biophys. Acta. 1791, 962-969. https://doi.org/10.1016/j.bbalip.2009.01.020
  28. Stuckey, J. A. and Dixon, J. E. (1999) Crystal structure of a phospholipase D family member. Nat. Struct. Biol. 6, 278-284. https://doi.org/10.1038/6716
  29. Choi, S. Y., Gonzalvez, F., Jenkins, G. M., Slomianny, C., Chretien, D., Arnoult, D., Petit, P. X. and Frohman, M. A. (2007) Cardiolipin deficiency releases cytochrome c from the inner mitochondrial membrane and accelerates stimuli-elicited apoptosis. Cell Death Differ. 14, 597-606. https://doi.org/10.1038/sj.cdd.4402020
  30. Chen, H. and Chan, D. C. (2010) Physiological functions of mitochondrial fusion. Ann. N. Y. Acad. Sci. 1201, 21-25. https://doi.org/10.1111/j.1749-6632.2010.05615.x
  31. Hales, K. G. and Fuller, M. T. (1997) Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell 90, 121-129. https://doi.org/10.1016/S0092-8674(00)80319-0
  32. Koshiba, T., Detmer, S. A., Kaiser, J. T., Chen, H., McCaffery, J. M. and Chan, D. C. (2004) Structural basis of mitochondrial tethering by mitofusin complexes. Science 305, 858-862. https://doi.org/10.1126/science.1099793
  33. Muliyil, S., Krishnakumar, P. and Narasimha M. (2011) Spatial, temporal and molecular hierarchies in the link between death, delamination and dorsal closure. Development 138, 3043-3054. https://doi.org/10.1242/dev.060731
  34. Suen, D. F., Norris K. L. and Youle, R. J. (2008) Mitochondrial dynamics and apoptosis. Genes. Dev. 22, 1577-1590. https://doi.org/10.1101/gad.1658508
  35. Toyama, Y., Peralta, X. G., Wells, A. R., Kiehart, D. P. and Edwards, G. S. (2008) Apoptotic force and tissue dynamics during Drosophila embryogenesis. Science 321, 1683-1686. https://doi.org/10.1126/science.1157052
  36. Langner, C. A., Birkenmeier, E. H., Ben-Zeev, O., Schotz, M. C., Sweet, H. O., Davisson, M. T. and Gordon, J. I. (1989) The fatty liver dystrophy (fld) mutation. A new mutant mouse with a developmental abnormality in triglyceride metabolism and associated tissue-specific defects in lipoprotein lipase and hepatic lipase activities. J. Biol. Chem. 264, 7994-8003.
  37. Langner, C. A., Birkenmeier, E. H., Roth, K. A., Bronson, R. T. and Gordon, J. I. (1991) Characterization of the peripheral neuropathy in neonatal and adult mice that are homozygous for the fatty liver dystrophy (fld) mutation. J. Biol. Chem. 266, 11955-11964.
  38. Twig, G., Elorza, A., Molina, A. J., Mohamed, H., Wikstrom, J. D., Walzer, G., Stiles, L., Haigh, S. E., Katz, S., Las, G., Alroy, J., Wu, M., Py, B. F., Yuan, J., Deeney, J. T., Corkey, B. E. and Shirihai, O. S. (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433-446. https://doi.org/10.1038/sj.emboj.7601963
  39. Schupbach, T. and Wieschaus, E. (1991) Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics. 129, 1119-1136.
  40. Sung, T. C., Roper, R. L., Zhang, Y., Rudge, S. A., Temel, R., Hammond, S. M., Morris, A. J., Moss, B., Engebrecht, J. and Frohman, M. A. (1997) Mutagenesis of phospholipase D defines a superfamily including a trans- Golgi viral protein required for poxvirus pathogenicity. EMBO J. 16, 4519-4530. https://doi.org/10.1093/emboj/16.15.4519
  41. Malone, C. D., Brennecke, J., Dus, M., Stark, A., McCombie, W. R., Sachidanandam, R. and Hannon, G. J. (2009) Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137, 522-535. https://doi.org/10.1016/j.cell.2009.03.040
  42. Olivieri, D., Sykora, M. M., Sachidanandam, R., Mechtler, K. and Brennecke, J. (2010) An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila. EMBO J. 29, 3301-3317. https://doi.org/10.1038/emboj.2010.212
  43. Saito, K., Inagaki, S., Mituyama, T., Kawamura, Y., Ono, Y., Sakota, E., Kotani, H., Asai, K., Siomi, H. and Siomi, M. C. (2009) A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature 461, 1296-1299. https://doi.org/10.1038/nature08501
  44. Saito, K., Ishizu, H., Komai, M., Kotani, H., Kawamura, Y., Nishida, K. M., Siomi, H. and Siomi, M. C. (2010) Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila. Genes Dev. 24, 2493-2498. https://doi.org/10.1101/gad.1989510
  45. Aravin, A. A., Lagos-Quintana, M., Yalcin, A., Zavolan, M., Marks, D., Snyder, B., Gaasterland, T., Meyer, J. and Tuschl, T. (2003) The small RNA profile during Drosophila melanogaster development. Dev. Cell 5, 337-350. https://doi.org/10.1016/S1534-5807(03)00228-4
  46. Suh, N. and Blelloch, R. (2011) Small RNAs in early mammalian development: from gametes to gastrulation. Development 138, 1653-1661. https://doi.org/10.1242/dev.056234
  47. Brennecke, J., Aravin, A. A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R. and Hannon, G. J. (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089-1103. https://doi.org/10.1016/j.cell.2007.01.043
  48. Chambeyron, S., Popkova, A., Payen-Groschene, G., Brun, C., Laouini, D., Pelisson, A. and Bucheton, A. (2008) piRNA-mediated nuclear accumulation of retrotransposon transcripts in the Drosophila female germline. Proc. Natl. Acad. Sci. U.S.A. 105, 14964-14969. https://doi.org/10.1073/pnas.0805943105
  49. Ronsseray, S., Josse, T., Boivin, A. and Anxolabehere, D. (2003) Telomeric transgenes and trans-silencing in Drosophila. Genetica. 117, 327-335. https://doi.org/10.1023/A:1022929121828
  50. Josse, T., Maurel-Zaffran, C., de Vanssay, A., Teysset, L., Todeschini, A. L., Delmarre, V., Chaminade, N., Anxolabehere, D. and Ronsseray, S. (2008) Telomeric trans-silencing in Drosophila melanogaster: tissue specificity, development and functional interactions between non-homologous telomeres. PLoS One 3, e3249. https://doi.org/10.1371/journal.pone.0003249
  51. Szakmary, A., Reedy, M., Qi, H. and Lin, H. (2009) The Yb protein defines a novel organelle and regulates male germline stem cell self-renewal in Drosophila melanogaster. J. Cell Biol. 185, 613-627. https://doi.org/10.1083/jcb.200903034
  52. Watanabe, T., Tomizawa, S., Mitsuya, K., Totoki, Y., Yamamoto, Y., Kuramochi-Miyagawa, S., Iida, N., Hoki, Y., Murphy, P. J., Toyoda, A., Gotoh, K., Hiura, H., Arima, T., Fujiyama, A., Sado, T., Shibata, T., Nakano, T., Lin, H., Ichiyanagi, K., Soloway, P. D. and Sasaki, H. (2011) Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science 332, 848-852. https://doi.org/10.1126/science.1203919
  53. Su, W., Chen, Q. and Frohman, M. A. (2009) Targeting phospholipase D with small-molecule inhibitors as a potential therapeutic approach for cancer metastasis. Future Oncol. 5, 1477-1486. https://doi.org/10.2217/fon.09.110
  54. Su, W., Yeku, O., Olepu, S., Genna, A., Park, J. S., Ren, H., Du, G., Gelb, M., Morris, A. and Frohman, M. A. (2009) FIPI, a Phospholipase D pharmacological inhibitor that alters cell spreading and inhibits chemotaxis. Mol. Pharmacol. 75, 437-446. https://doi.org/10.1124/mol.108.053298
  55. Scott, S. A., Selvy, P. E., Buck, J. R., Cho, H. P., Criswell, T. L., Thomas, A. L., Armstrong, M. D., Arteaga, C. L., Lindsley, C. W. and Brown, H. A. (2009) Design of isoform-selective phospholipase D inhibitors that modulate cancer cell invasiveness. Nat. Chem. Biol. 5, 108-117. https://doi.org/10.1038/nchembio.140
  56. Nishikimi, A., Fukuhara, H., Su, W., Hongu, T., Takasuga, S., Mihara, H., Cao, Q., Sanematsu, F., Kanai, M., Hasegawa, H., Tanaka, Y., Shibasaki, M., Kanaho, Y., Sasaki, T., Frohman, M. A. and Fukui, Y. (2009) Sequential Regulation of DOCK2 Dynamics by Two Phospholipids during Neutrophil Chemotaxis. Science 324, 384-387. https://doi.org/10.1126/science.1170179
  57. Dall'Armi, C., Hurtado-Lorenzo, A., Tian, H., Morel, E., Nezu, A., Chan, R. B., Yu, W. H., Robinson, K. S., Yeku, O., Small, S. A., Duff, K., Frohman, M. A., Wenk, M. R., Yamamoto, A. and Di Paolo, G. (2010) The phospholipase D1 pathway modulates macroautophagy. Nat. Commun. 1, 142. https://doi.org/10.1038/ncomms1144
  58. Tsukahara, T., Tsukahara, R., Fujiwara, Y., Yue, J., Cheng, Y., Guo, H., Bolen, A., Zhang, C., Balazs, L., Re, F., Du, G., Frohman, M. A., Baker, D. L., Parrill, A. L., Uchiyama, A., Kobayashi, T., Murakami-Murofushi, K. and Tigyi, G. (2010) Phospholipase D2-dependent inhibition of the nuclear hormone receptor PPARgamma by cyclic phosphatidic acid. Mol. Cell. 39, 421-432. https://doi.org/10.1016/j.molcel.2010.07.022

Cited by

  1. H2O2-Activated Mitochondrial Phospholipase iPLA2γ Prevents Lipotoxic Oxidative Stress in Synergy with UCP2, Amplifies SignalingviaG-Protein–Coupled Receptor GPR40, and Regulates Insulin Secretion in Pancreatic β-Cells vol.23, pp.12, 2015, https://doi.org/10.1089/ars.2014.6195
  2. Mechanistic perspective of mitochondrial fusion: Tubulation vs. fragmentation vol.1833, pp.1, 2013, https://doi.org/10.1016/j.bbamcr.2012.07.016
  3. Mouse Tafazzin Is Required for Male Germ Cell Meiosis and Spermatogenesis vol.10, pp.6, 2015, https://doi.org/10.1371/journal.pone.0131066
  4. Non-coding RNAs and diseases vol.47, pp.4, 2013, https://doi.org/10.1134/S0026893313040171
  5. Calorie restriction promotes cardiolipin biosynthesis and distribution between mitochondrial membranes vol.162, 2017, https://doi.org/10.1016/j.mad.2017.02.004
  6. Formation and Regulation of Mitochondrial Membranes vol.2014, 2014, https://doi.org/10.1155/2014/709828
  7. Phospholipids in mitochondrial dysfunction during hemorrhagic shock vol.49, pp.2, 2017, https://doi.org/10.1007/s10863-016-9691-7
  8. Glycerol kinase-like proteins cooperate with Pld6 in regulating sperm mitochondrial sheath formation and male fertility vol.3, 2017, https://doi.org/10.1038/celldisc.2017.30
  9. Human RNAi pathway: crosstalk with organelles and cells vol.14, pp.1, 2014, https://doi.org/10.1007/s10142-013-0344-1
  10. The diversity of algal phospholipase D homologs revealed by biocomputational analysis vol.51, pp.5, 2015, https://doi.org/10.1111/jpy.12334
  11. Antagonizing effect of CLPABP on the function of HuR as a regulator of ARE-containing leptin mRNA stability and the effect of its depletion on obesity in old male mouse vol.1861, pp.11, 2016, https://doi.org/10.1016/j.bbalip.2016.09.006
  12. Mechanisms by Which Different Functional States of Mitochondria Define Yeast Longevity vol.16, pp.3, 2015, https://doi.org/10.3390/ijms16035528
  13. Mitochondrial dynamics altered by oxidative stress in cancer vol.50, pp.10, 2016, https://doi.org/10.1080/10715762.2016.1210141
  14. Role of phospholipases in adrenal steroidogenesis vol.229, pp.1, 2016, https://doi.org/10.1530/JOE-16-0007