DOI QR코드

DOI QR Code

Simulation on CO2 capture process using an Aqueous MEA solution

MEA 흡수제를 이용한 이산화탄소 포집 공정 모사

  • Woo, Dae-Sik (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Nam, Sung-Chan (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Jeong, Soon-Kwan (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Yoon, Yeo-Il (Greenhouse Gas Research Center, Korea Institute of Energy Research)
  • 우대식 (한국에너지기술연구원 온실가스연구단) ;
  • 남성찬 (한국에너지기술연구원 온실가스연구단) ;
  • 정순관 (한국에너지기술연구원 온실가스연구단) ;
  • 윤여일 (한국에너지기술연구원 온실가스연구단)
  • Received : 2011.11.30
  • Accepted : 2012.01.05
  • Published : 2012.01.31

Abstract

The $CO_2$ capture technology using an aqueous amine solution is studied widely now. The entire process consists of an absorber to remove carbon dioxide selectively and a regenerator to regenerate absorbent and acquire pure carbon dioxide. Because there are the complicated design variables that affect performance of the process, it needs optimization and analysis through modeling to make a commercially reliable process. In this study, the decomposition method was proposed to consider convergence problem and sensitivity analysis was executed for the carbon dioxide capture process variables. Non-equilibrium model was used in the simulation to get more realistic results and we designed optimized process with more than 95% purity and 90% recovery.

아민 수용액을 이용한 이산화탄소 포집기술은 현재 가장 넓게 연구되는 분야이다. 전체 공정은 선택적 이산화탄소 흡수를 위한 흡수탑과 흡수제를 재생하고 고순도 이산화탄소를 얻기 위한 재생탑으로 이루어져있다. 공정 성능에 영향을 미치는 복잡한 설계 변수들이 존재하기 때문에 상업적으로 신뢰할만한 공정을 설계하기 위해서는 모델링을 통한 공정 해석과 최적화가 필요하다. 본 연구에서는 공정의 수렴문제를 고려하여 분해방법을 사용하였고, 아민계 흡수제를 이용하는 이산화탄소 포집 공정의 변수들에 대한 민감도 분석을 수행하였다. 현실적인 설계 결과를 얻기 위해 비평형 모델을 사용하였고 95% 이상의 순도로 90%의 이산화탄소를 회수할 수 있는 최적화된 공정을 설계할 수 있었다.

Keywords

References

  1. U. Desideri, P. Alberto, "Performance modeling of a carbon dioxide removal system for power plants", Energy Conversion & Management, vol 40, pp. 1899-1915, 1999. https://doi.org/10.1016/S0196-8904(99)00074-6
  2. S. Freguia, G.T. Rochelle, "Modelling of $CO_{2}$ Capture by Aqueous Monoethanolamine", AIChE Journal, vol 49, pp. 1676-1686, 2003. https://doi.org/10.1002/aic.690490708
  3. C. Alie, P. Backham, E. Croiset, P.L. Douglas, "Simulation of $CO_{2}$ capture using MEA scrubbing: a flowsheet decomposition method", Energy Conversion & Management vol 46, pp. 475-487, 2005. https://doi.org/10.1016/j.enconman.2004.03.003
  4. F.A. Tobiesen, H.F. Svendsen, K.A. Hoff, " Desorber energy consumption amine based absorption plants", International Journal of Green Energy, vol 2, pp. 201-215, 2005. https://doi.org/10.1081/GE-200058981
  5. J.H.Cho, S.K.Rho, S.T.Ko, W.H.Han and J.K.Jeon, "Chemical process simulation using Aspenplus", Multi Information Co., 2001.
  6. T. Pintola, P. Tontiwachwuthikul, A. Meisen, "Simulation of pilot plant and industrial $CO_{2}$-MEA absorbers", Gas Separation & Purification vol. 7 No 1, pp. 47-52, 1993. https://doi.org/10.1016/0950-4214(93)85019-R
  7. D.M. Austgen, G.T. Rochelle, X. Peng, C.C. Chen, "Model of Vapor-Liquid Equilibria for Aqueous Acid Gas-Alkanolamine Systems Using the Electrolyte-NRTL Equation", Ind. Eng. Chem. Res., Vol. 28, pp. 1060-1073, 1989. https://doi.org/10.1021/ie00091a028
  8. F.Y. Jou, A.E. Mather, F.D. Otto, "Solubility of Hydrogen Sulfide and Carbon Dioxide in Aqueous Methyldiethanolamine Solutions", Ind. Eng. Chem. Proc. Des. Dev., Vol. 21, pp. 539, 1982. https://doi.org/10.1021/i200019a001
  9. H. Hikita, H. Asai, M. Ishikawa, M. Honda, "The Kinetics of Reactions of Carbon Dioxide with Monoethanolamine, Diethanolamine, and Triethanolamine by a Rapid Mixing Method", Chem. Eng. J., Vol. 13, pp. 7, 1977. https://doi.org/10.1016/0300-9467(77)80002-6
  10. B.A. Oyenekan, G.T. Rochelle, "Energy Performance of Stripper Configurations for $CO_{2}$ Capture by Aqueous Amines", Ind. Eng. Chem. Res., vol. 45, No. 8, pp. 2457-64, 2006. https://doi.org/10.1021/ie050548k
  11. M.R. Abu-Zahra, J.P. Niederer, P.H. Feron, G.F. Versteeg, "$CO_{2}$ Capture from Power Plants: PartI. A Parametric study of the Technical Performance Based on Mono-Ethanolamine", Int. J. Greenhouse Gas Control, vol. 1, No. 1, pp. 37-46, 2007. https://doi.org/10.1016/S1750-5836(06)00007-7
  12. M.O. Schach, R. Schneider, H. Schramm, J.U. Repke, "Techno-economic analysis of postcombustion processes for the capture of carbon dioxide from power plant flue gas", Ind. Eng. Chem. Res., Vol. 49, pp. 2363-2370, 2010. https://doi.org/10.1021/ie900514t
  13. L. William, "Distillation design and control using aspen simulation", A JOHN WILEY&SONS, INC., publication, 2006.
  14. G.T. Rochelle, S. Bishnoi, S. Chi, and H. Dang, "Research Needs for $CO_{2}$ Capture from Flue Gas by Aqueous Absorption Stripping, Final report", U.S. Dept. of Energy, Federal Energy Technology Center, Washington, DC, 2001.