DOI QR코드

DOI QR Code

Characteristics of the sintered body of the Al2TiO5 with addition of LAS (β-spodumene) and Fe2O3

LAS (β-spodumene)와 Fe2O3 첨가에 따른 Al2TiO5의 소결체 특성 연구

  • 김상훈 (한국세라믹기술원 이천분원) ;
  • 강은태 (국립경상대학교 재료공학부 재료공학과) ;
  • 김응수 (한국세라믹기술원 이천분원) ;
  • 황광택 (한국세라믹기술원 이천분원) ;
  • 조우석 (한국세라믹기술원 이천분원)
  • Received : 2011.10.27
  • Accepted : 2012.02.10
  • Published : 2012.02.29

Abstract

$Al_2TiO_5$ ceramics were sintered by a solid-state reaction. LAS (${\beta}$-spodumene) and $Fe_2O_3$ were added to the $Al_2TiO_5$ composition for enhancement of sintering behavior such as mechanical strength and thermal shock resistance. The sintered body was much densified by addition of LAS and $Fe_2O_3$ because LAS formed the liquid-phase and $Fe_2O_3$ suppressed the grain growth. We have systematically investigated the sintering characteristics, microstructures, mechanical properties, and thermal shock resistance according to the change of the amount of additive. When the additive of LAS (20 wt%)-$Fe_2O_3$ was added to $Al_2TiO_5$, it confirmed that superior mechanical properties of the fracture strength of over 120 MPa and the thermal shock resistance of over $1,200^{\circ}C$ were achieved.

$Al_2TiO_5$에 LAS(${\beta}$-spodumene)와 $Fe_2O_3$를 첨가하여 고상법으로 세라믹 소결체를 제조하였다. $Al_2TiO_5$에 첨가된 LAS는 액상을 형성하고, $Fe_2O_3$는 입자 성장을 억제시켜 소결체를 치밀화하였다. 첨가제의 양을 변화시켜 소결특성, 기계적 특성 및 열충격 특성에 대하여 조사하였다. $Fe_2O_3$가 20 wt% 첨가된 LAS를 $Al_2TiO_5$에 20 wt% 첨가하였을 때, 꺽임 강도는 120 MPa 이상이었고, 열충격에 대한 저항성은 $1200^{\circ}C$ 이상으로 우수함을 확인하였다.

Keywords

References

  1. I.J. Kim and C. Zografou, "Thermal shock resistance of $Al_{2}TiO_{5}$ ceramics prepared from electrofused powders", J. Kor. Ceram. Soc. 35[10] (1998) 1061.
  2. F.A. Costa Oliveira and J.C. Fernandes, "Mechanical and thermal behavior of cordierite-zirconia composites", Ceramics International 28[1] (2002) 79. https://doi.org/10.1016/S0272-8842(01)00061-X
  3. S.J. Lee and K.S. Cho, "Characteristics of cordierite ceramics filled with alumina platelets", J. Kor. Cryst and Cryst. Tech. 12[6] (2002) 292.
  4. H.S. Ragab, R.A. Abd Ellah, A. Shehap, M.S. Abo Ellil, W.H. Osman and F.G. Abd El-Kader., "Study of thermal currents in powder ${\beta}$-spodumene ceramics doped with CuO, FeO and $TiO_{2}$", J. Phy-Che, Solids (2002) 1839.
  5. S.M. Kang, J.H. Shin, J.W. Han, J.K. Choi, B.S. Jeon and K.K. Orr, "Spodumene single crystal growth by FZ method", J. Kor. Cryst and Cryst. Tech. 3[2] (1993) 162.
  6. J.Y. Jeong, H.M. Lee and H.L. Lee, "Preparation of $Al_{2}O_{3}-TiO_{2}$ composite powder from Alkoxide (1): 1. Preparetion of $Al_{2}TiO_{5}$ by the sol-gel method and the effects of additives", J. Kor. Ceram. Soc. 33[10] (1996) 1138.
  7. W. Woignier and P. Lespade, "$Al_{2}TiO_{5}-TiO_{2}$ and $Al_{2}TiO_{5}$ ceramic materials by the sol-gel process", J. Am. Cryst. Soc. 100 (1988) 325.
  8. I.J. Kim and G. Cao, "Low thermal expansion behavior and thermal durability of $ZrTiO_{4}-Al_{2}TiO_{5}-Fe2O_{3}$ ceramics between 750 and $1400{^{\circ}C}$", J. Euro. Ceram. Soc. 22[14-15] (2002) 2627. https://doi.org/10.1016/S0955-2219(02)00126-7
  9. L. Giordano, M. Viviani, C. Bottino, M.T. Buscaglia, V. Buscagliaand and P. Nanni, "Microstructure and thermal expansion of $Al_{2}TiO_{5}-MgTi_{2}O_{5}$ solid solutions obtained by reaction sintering", J. Euro. Ceram. Soc. 22[11] (2002) 1811. https://doi.org/10.1016/S0955-2219(01)00503-9
  10. J.S. Park, S.U. Lee and H.D. Nam, "Effects of MgO addition on mechanical and thermal properties of $Al_{2}O_{3}-TiO_{2}$ composites", Materials Research 1[1] (2000) 64.
  11. C.G. Shi and I.M. Low, "Effect of spodumene additions on the sintering and densification of aluminum titanate", Materials Research Bulletin 33[6] (1998) 817. https://doi.org/10.1016/S0025-5408(98)00061-0
  12. C.G. Shi and I.M. Low, "Use of spodumene for liquidphase-sintering of aluminium titanate", Materials Letters 36[1-4] (1998) 118. https://doi.org/10.1016/S0167-577X(98)00013-5
  13. A. Bayuseno, B.A. Latella and B.H. O'Connor, "Resistance of alumina-spodumene ceramics to thermal shock", J. Am. Ceram. Soc. 82 (1999) 819. https://doi.org/10.1111/j.1151-2916.1999.tb01841.x
  14. L.M. Low, E. Mathews, T. Garrod, D. Zhou, N. Phillips and X.M. Pillai, "Processing of spodumene-modified mullite ceramics", J. Materials Science 32[14] (1997) 3807. https://doi.org/10.1023/A:1018679808095
  15. Y.J. Kwon, Y.T. Kim, K.G. Lee and Y.J. Kim, "Lightweight aggregate bloating mechanism of clay/incinerated ash/additive system", J. Kor. Ceram. Soc. 38[9] (2001) 811.
  16. J.H. Park, "Mechinable oxide ceramics made by reactive sintering of $Al_{2}O_{3}$ and $TiO_{2}$", degree of masters, dong-eui university (2010) p.7.
  17. H.R. Rezaie, R. Naghizado, N. Farrokhnia, S. Arabi and M. Sobhani, "The Effect of $Fe_{2}O_{3}$ addition on tialite formation", Ceramics International 35[2] (2009) 679. https://doi.org/10.1016/j.ceramint.2008.02.009
  18. T. Korim, "Effect of $Mg^{2+}$ and $Fe^{3+}$-ions on formation mechanism of aluminium titanate", Ceramics International 35[4] (2009) 1674.
  19. Fidel H. Perera, Antonia Pajares and Juan J. Melendez, "Strength of aluminium titianate/mullite composites containing thermal stabilizer", J. Euro. Ceram. Soc. 31[9] (2011) 1697.