DOI QR코드

DOI QR Code

Involvement of Caenohabditis elegans MAPK Signaling Pathways in Oxidative Stress Response Induced by Silver Nanoparticles Exposure

  • Roh, Ji-Yeon (School of Environmental Engineering, College of Urban Science, University of Seoul) ;
  • Eom, Hyun-Jeong (School of Environmental Engineering, College of Urban Science, University of Seoul) ;
  • Choi, Jin-Hee (School of Environmental Engineering, College of Urban Science, University of Seoul)
  • 투고 : 2012.01.26
  • 심사 : 2012.03.21
  • 발행 : 2012.03.31

초록

In the present study, toxicity of silver nanoparticles (AgNPs) was investigated in the nematode, Caenohabditis elegans focusing on the upstream signaling pathway responsible for regulating oxidative stress, such as mitogen-activated protein kinase (MAPK) cascades. Formation of reactive oxygen species (ROS) was observed in AgNPs exposed C.elegans, suggesting oxidative stress as an important mechanism in the toxicity of AgNPs towards C. elegans. Expression of genes in MAPK signaling pathways increased by AgNPs exposure in less than 2-fold compared to the control in wildtype C.elegans, however, those were increased dramatically in sod-3 (gk235) mutant after 48 h exposure of AgNPs (i.e. 4-fold for jnk-1 and mpk-2; 6-fold for nsy-1, sek-1, and pmk-1, and 10-fold for jkk-1). These results on the expression of oxidative stress response genes suggest that sod-3 gene expression appears to be dependent on p38 MAPK activation. The high expressions of the pmk-1 gene 48 h exposure to AgNPs in the sod-3 (gk235) mutant can also be interpreted as compensatory mechanisms in the absence of important stress response genes. Overall results suggest that MAPK-based integrated stress signaling network seems to be involved in defense to AgNPs exposure in C.elegans.

키워드

참고문헌

  1. AshaRani, P.V., Low Kah Mun, G., Hande, M.P. and Valiyaveettil, S. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3, 279-290. https://doi.org/10.1021/nn800596w
  2. Back, P., Matthijssens, F., Vlaeminck, C., Braeckman, B.P. and Vanfleteren, J.R. (2010). Effects of sod gene overexpression and deletion mutation on the expression profiles of reporter genes of major detoxification pathways in Caenorhabditis elegans. Exp. Gerontol., 45, 603-610. https://doi.org/10.1016/j.exger.2010.01.014
  3. Bae, E., Park, H.J., Lee, J., Kim, Y., Yoon, J., Park, K., Choi, K. and Yi, J. (2010). Bacterial Cytotoxicity of the Silver Nanoparticle Related to Physicochemical Metrics and Agglomeration Properties. Environ. Toxicol. Chem., 29, 2154-2160. https://doi.org/10.1002/etc.278
  4. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77, 71-94.
  5. Campbell, F.W. and Compton, R.G. (2010). The use of nanoparticles in electroanalysis: an updated review. Anal. Bioanal. Chem., 396, 241-259. https://doi.org/10.1007/s00216-009-3063-7
  6. Eom, H.J. and Choi, J. (2009). Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol. Lett., 187, 77-83. https://doi.org/10.1016/j.toxlet.2009.01.028
  7. Giudice, A. and Montella, M. (2006). Activation of the Nrf2-ARE signaling pathway: a promising strategy in cancer prevention. Bioessays, 28, 169-181. https://doi.org/10.1002/bies.20359
  8. Inoue, H., Hisamoto, N., An, J.H., Oliveira, R.P., Nishida, E., Blackwell, T.K. and Matsumoto, K. (2005). The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes Dev., 19, 2278-2283. https://doi.org/10.1101/gad.1324805
  9. Kahru, A. and Dubourguier, H.C. (2010). From ecotoxicology to nanoecotoxicology. Toxicology, 269, 105-119. https://doi.org/10.1016/j.tox.2009.08.016
  10. Kawata, K., Osawa, M. and Okabe, S. (2009). In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ. Sci. Technol., 43, 6046-6051. https://doi.org/10.1021/es900754q
  11. Kim, D.H., Feinbaum, R., Alloing, G., Emerson, F.E., Garsin, D.A., Inoue, H., Tanaka-Hino, M., Hisamoto, N., Matsumoto, K., Tan, M.W. and Ausubel, F.M. (2002). A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science, 297, 623-626. https://doi.org/10.1126/science.1073759
  12. Kim, S., Choi, J.E., Choi, J., Chung, K.H., Park, K., Yi, J. and Ryu, D.Y. (2009). Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol. In Vitro, 23, 1076-1084. https://doi.org/10.1016/j.tiv.2009.06.001
  13. Kyriakis, J.M. and Avruch, J. (2001). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev., 81, 807-869.
  14. Lim, D., Roh, J.Y., Eom, H.J., Choi, J.Y., Hyun, J. and Choi, J. (2012). Oxidative stress related PMK-1 P38 MAPK activation as a mechanism of toxicity of silver nanoparticles on the reproduction of the nematode caenohabditis elegans. Environ. Toxicol. Chem., 31, 585-592 https://doi.org/10.1002/etc.1706
  15. Limbach, L.K., Wick, P., Manser, P., Grass, R.N., Bruinink, A. and Stark, W.J. (2007). Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ. Sci. Technol., 41, 4158-4163. https://doi.org/10.1021/es062629t
  16. Monteiller, C., Tran, L., MacNee, W., Faux, S., Jones, A., Miller, B. and Donaldson, K. (2007). The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area, Occup. Environ. Med., 64, 609-615. https://doi.org/10.1136/oem.2005.024802
  17. Pei, B., Wang, S., Guo, X., Wang, J., Yang, G., Hang, H. and Wu, L. (2008). Arsenite-induced germline apoptosis through a MAPK-dependent, p53-independent pathway in Caenorhabditis elegans. Chem. Res. Toxicol., 21, 1530-1535. https://doi.org/10.1021/tx800074e
  18. Roh, J.Y., Sim, S.J., Yi, J., Park, K., Chung, K.H., Ryu, D.Y. and Choi, J. (2009). Ecotoxicity of silver nanoparticles on the soil nematode caenorhabditis elegans using functional ecotoxicogenomics. Environ. Sci. Technol., 43, 3933-3940. https://doi.org/10.1021/es803477u
  19. Troemel, E.R., Chu, S.W., Reinke, V., Lee S.S., Ausubel, F.M. and Kim, D.H. (2006). p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet., 2, e183. https://doi.org/10.1371/journal.pgen.0020183
  20. Williams, P.L. and Dusenbery, D.B. (1990). Aquatic toxicity testing using the nematode Caenorhabditis elegans. Environ. Toxicol. Chem., 9, 1285-1290. https://doi.org/10.1897/1552-8618(1990)9[1285:ATTUTN]2.0.CO;2

피인용 문헌

  1. vol.35, pp.9, 2015, https://doi.org/10.1002/jat.3058
  2. Evaluation of Some Biochemical Parameters and Brain Oxidative Stress in Experimental Rats Exposed Chronically to Silver Nitrate and the Protective Role of Vitamin E and Selenium vol.32, pp.4, 2016, https://doi.org/10.5487/TR.2016.32.4.301
  3. vol.11, pp.5, 2017, https://doi.org/10.1080/17435390.2017.1342011
  4. Materials and toxicological approaches to study metal and metal-oxide nanoparticles in the model organism Caenorhabditis elegans vol.4, pp.5, 2017, https://doi.org/10.1039/C7MH00166E
  5. Circulating miRNAs and their target genes associated with arsenism caused by coal-burning vol.6, pp.2, 2017, https://doi.org/10.1039/C6TX00428H
  6. pp.1029-0486, 2017, https://doi.org/10.1080/02772248.2017.1387264
  7. Plant Responses to Nanoparticle Stress vol.16, pp.11, 2015, https://doi.org/10.3390/ijms161125980
  8. Quantification of silver nanoparticle toxicity to algae in soil via photosynthetic and flow-cytometric analyses vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-017-18680-5
  9. Toxic and Genotoxic Effects of Silver Nanoparticles in Drosophila pp.08936692, 2019, https://doi.org/10.1002/em.22262